0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

分析信号完整性和电源完整性

电磁兼容EMC 来源:硬件笔记本 作者:硬件笔记本 2022-06-16 10:29 次阅读

在高度集成的电子产品中,电源系统的设计占到了设计工作量的50%左右;对于复杂的FPGA类型的产品应用,在电路中常常会达到15~30路不同的电源。

电源完整性的目的就是给系统提供持续、稳定、干净的电源,保证系统稳定的工作。在数字系统中,使信号完整性满足系统设计的要求也需要有一个非常稳定的电源系统,但是又不能使电源系统超标。所以在设计电源完整性时,不仅仅关注的是去耦电容,还需要关注电源完整性、信号完整性和电磁兼容性这个“生态系统”,尤其是要考虑高度集成化的数字电路对电源完整性的影响… …

但是传统分析信号完整性和电源完整性都是分开分析的,为了更好的分析SI和PI的相互影响,我们需要把SI和PI放在同一个EM仿真中来分析。

49f3a968-ed1b-11ec-ba43-dac502259ad0.jpg

PDN

真实的PDN是什么样子的呢?主要分为三个部分:供电端(VRM)、用电端(Sink)和传输通道(PCB、Cable、瓷片电容等等)。

4a02fa1c-ed1b-11ec-ba43-dac502259ad0.jpg

电路板设计中,都有电源分配网络系统。电源分配网络系统的作用就是给系统内所有器件或芯片提供足够的电源,并满足系统对电源稳定性的要求。

我们看到电源、GND网络,其实分布着阻抗。

4a324a06-ed1b-11ec-ba43-dac502259ad0.jpg

4a3f708c-ed1b-11ec-ba43-dac502259ad0.jpg

4a51b83c-ed1b-11ec-ba43-dac502259ad0.jpg

电源噪声余量计算:

1、芯片的datasheet会给一个规范值,通常是5%;要考虑到稳压芯片直流输出误差,一般是+/_2.5%,因此电源噪声峰值幅度不超过+/_2.5%。

2、如芯片的工作电压范围是3.13~3.47,稳压芯片标出输出电压是3.3V,安装在电路板后的输出电压是3.36V。容许的电压的变化范围是3.47-3.36=110mv。稳压芯片输出精度是+/_1%,及3.36* +/_1%=+/_33.6mv。电源噪声余量为110-33.6=76.4mv。

计算电源噪声要注意五点

(1)稳压芯片的输出的精确值是多少。

(2)工作环境的是否是稳压芯片所推荐的环境。

(3)负载情况是怎么样,这对稳压芯片输出也有影响。

(4)电源噪声最终会影响到信号质量。而信号上的噪声来源不仅仅是电源噪声,反射窜扰等信号完整性问题也会在信号上叠加,因此不能把所有噪声余量留给电源系统。

(5)不同的电压等级对电源噪声要求也不样,电压越小噪声余量越小。模拟电路对电源要求更高。

电源噪声来源

(1)稳压芯片输出的电压不是恒定的,会有一定的纹波。

(2)稳压电源无法实时响应负载对于电流需求的快速变化。稳压电源响应的频率一般在200Khz以内,能做正确的响应,超过了这个频率则在电源的输出短引脚处出现电压跌落。

(3)负载瞬态电流在电源路径阻抗和地路径阻抗产生的压降。

(4)外部的干扰。

目标阻抗

目标阻抗是电源系统的瞬态阻抗,对快速变化的电流的表现出来的一种特性阻抗。目标阻抗和一定宽度的频率有关,在感兴趣的频率范围内,电源阻抗都不能超过这个值。

目标阻抗公式

4a6a991a-ed1b-11ec-ba43-dac502259ad0.png

去耦的电源电压,ripple为允许的电压波动范围,典型值为2.5%,△Imax为负载芯片最大瞬态电流变化量。

在进行电源完整性设计、分析和仿真的时候都会涉及到一个非常重要的概念,就是目标阻抗?但是目标阻抗真的是很多工程师认为的那么简单吗?

4a76b75e-ed1b-11ec-ba43-dac502259ad0.jpg

在真实的电源系统中,电容已经不再是一个简单的电容,而是包含了ESR、ESL的寄生参数。它们有串联等效的作用,也有并联等效的作用,呈现出来的结果都是不相同的。

4a877d78-ed1b-11ec-ba43-dac502259ad0.jpg

4ab15bca-ed1b-11ec-ba43-dac502259ad0.jpg

PDN阻抗随着频率而变化,不同的VRM也会导致阻抗曲线变化,好的VRM会使整条PDN阻抗曲线非常平滑。

4abefb0e-ed1b-11ec-ba43-dac502259ad0.jpg

信号的频谱含量范围很广,并且随着传输数据而不断变化,在这种情况下,我们确实需要关注阻抗较高的频率上的强制响应,确保这个响应不要产生影响芯片与芯片之间通信的PDN噪声。

4ace3aba-ed1b-11ec-ba43-dac502259ad0.jpg

阻抗曲线都在目标阻抗以下都没问题了吗?如果存在多个不超过目标阻抗的巨大的反谐振点是否可以呢?

4ae2603a-ed1b-11ec-ba43-dac502259ad0.jpg

电路设计时,通常会在电路板上放置非常多的电容,那这些电容如何选型?如何搭配?如何放置?这是每一位工程师都会遇到的情况。

4b019a40-ed1b-11ec-ba43-dac502259ad0.jpg

选择电容

用一个电容组合的例子。这个组合使用的电容为:2个680uf钽电容,7个2.2uf陶瓷电容(0805封装),13个0.22uf陶瓷电容(0603封装),26个0.022uf陶瓷电容(0402)。图中上部平坦的曲线是680uf电容的阻抗曲线,其它三个容值的曲线为为图中三个V字曲线,从左到右2.2uf →0.22uf → 0.022uf。总的阻抗曲线为底部粗包路线。

这个组合实现了在500K到150M范围内保持阻抗在33毫欧以下,到500M处,阻抗上升到110毫欧,从图中看反谐振点控制的很低。

4b296fca-ed1b-11ec-ba43-dac502259ad0.jpg

实际案例

这是一个实际的案例,PCB是Xilinx的Demo板,包含了4pcs DDR4颗粒,速率达到3.2Gbps,同时还包含了很多SerDes总线,如USB,SFP+和PCIE等等。有15路主要的电源,与各类数字信号交织在一块16层的PCB板上。

4b3893ce-ed1b-11ec-ba43-dac502259ad0.jpg

4b4b3740-ed1b-11ec-ba43-dac502259ad0.jpg

对于这么复杂的PCB设计,如何开始EM仿真呢?最好的方式就是在直流状态下进行IR Drop的仿真,这个很容易理解。使用ADS PIPro就可以完成这个工作。

4b61d928-ed1b-11ec-ba43-dac502259ad0.jpg

温度也会造成电源系统的不确定性,使用PIPro可以进行电源系统的电热联合仿真。下图表示的就是电源系统是否考虑温度的影响,这样导致的结果是不相同的。

4b8b655e-ed1b-11ec-ba43-dac502259ad0.jpg

使用PIPro可以提取PDN的S参数,同时仿真PDN的阻抗曲线。

4b9a6ab8-ed1b-11ec-ba43-dac502259ad0.jpg

4be0a7d0-ed1b-11ec-ba43-dac502259ad0.jpg

4c02d51c-ed1b-11ec-ba43-dac502259ad0.jpg

其实信号与电源的关系就像一艘快艇行驶在海面上,相互之间都是有影响的。为了捕获SI和PI的所有的影响,可以把SI和PI放在同一个EM仿真中同时来仿真以获取一个完整的S参数。

4c0f3bea-ed1b-11ec-ba43-dac502259ad0.jpg

SSN仿真是一直以来SI/PI协同仿真的重点,下面是一个SSN仿真的案例:

4c221184-ed1b-11ec-ba43-dac502259ad0.jpg

4c490a78-ed1b-11ec-ba43-dac502259ad0.jpg

PDN的测量主要有时域测量和频域测量之分,下面是关于SSN噪声测量的案例:

4c56435a-ed1b-11ec-ba43-dac502259ad0.jpg

4c65abba-ed1b-11ec-ba43-dac502259ad0.jpg

如何设计一个好的电源系统,这是有一些可以遵循的方法的:

4c78f9ae-ed1b-11ec-ba43-dac502259ad0.jpg

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1628

    文章

    21722

    浏览量

    602869
  • 电路板
    +关注

    关注

    140

    文章

    4948

    浏览量

    97667
  • 去耦电容
    +关注

    关注

    11

    文章

    315

    浏览量

    22323

原文标题:电源完整性,不仅仅是去耦电容那么简单[20220616]

文章出处:【微信号:EMC_EMI,微信公众号:电磁兼容EMC】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    听懂什么是信号完整性

    2024年12月20日14:00-16:00中星联华科技将举办“高速信号完整性分析与测试”-“码”上行动系列线上讲堂线上讲堂。本期会议我们将为大家介绍高速串行总线传输基本框架,什么是信号
    的头像 发表于 12-15 23:33 81次阅读
    听懂什么是<b class='flag-5'>信号</b><b class='flag-5'>完整性</b>

    信号完整性信号一致你还不知道吗?#示波器 #信号完整性

    信号完整性
    安泰仪器维修
    发布于 :2024年09月25日 17:59:54

    高速电路设计与信号完整性分析

    信号完整性设计已经成为系统设计能否成功的主要因素,同时电源完整性和电磁兼容问题对高速电路的设计影响很大甚至至关重要。本文研究了信号
    发表于 09-25 14:46 0次下载

    高速电路中的信号完整性电源完整性研究

    高速电路中的信号完整性电源完整性研究
    发表于 09-25 14:44 0次下载

    高速高密度PCB信号完整性电源完整性研究

    高速高密度PCB信号完整性电源完整性研究
    发表于 09-25 14:43 5次下载

    高速PCB信号完整性分析及应用

    电子发烧友网站提供《高速PCB信号完整性分析及应用.pdf》资料免费下载
    发表于 09-21 14:14 1次下载

    高速PCB信号完整性设计与分析

    高速PCB信号完整性设计与分析
    发表于 09-21 11:51 0次下载

    高速PCB的信号完整性电源完整性和电磁兼容研究

    电子发烧友网站提供《高速PCB的信号完整性电源完整性和电磁兼容研究.pdf》资料免费下载
    发表于 09-19 17:37 0次下载

    高速电路电源分配网络设计与电源完整性分析

    电子发烧友网站提供《高速电路电源分配网络设计与电源完整性分析.pdf》资料免费下载
    发表于 09-19 17:35 0次下载

    信号完整性电源完整性-电源完整性分析

    电子发烧友网站提供《信号完整性电源完整性-电源完整性分析
    发表于 08-12 14:31 40次下载

    信号完整性电源完整性-差分对的特性

    电子发烧友网站提供《信号完整性电源完整性-差分对的特性.pdf》资料免费下载
    发表于 08-12 14:28 1次下载

    信号完整性电源完整性-信号的串扰

    电子发烧友网站提供《信号完整性电源完整性-信号的串扰.pdf》资料免费下载
    发表于 08-12 14:27 0次下载

    信号完整性电源完整性 第一章 概论

    电子发烧友网站提供《信号完整性电源完整性 第一章 概论.pdf》资料免费下载
    发表于 08-09 14:49 1次下载

    示波器探头在电源完整性测量上的应用

    。示波器探头作为测量工具,在电源完整性分析中扮演着关键角色。本文将探讨示波器探头在电源完整性测量中的应用,以及如何选择和使用合适的探头来提高
    的头像 发表于 08-02 09:38 288次阅读
    示波器探头在<b class='flag-5'>电源</b><b class='flag-5'>完整性</b>测量上的应用

    什么是信号完整性

    在现代电子通信和数据处理系统中,信号完整性(Signal Integrity, SI)是一个至关重要的概念。它涉及信号在传输过程中的质量保持,对于确保系统性能和稳定性具有决定性的影响。本文将从
    的头像 发表于 05-28 14:30 1126次阅读