0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

详解SiC MOSFET的寄生导通问题

富昌电子 来源:富昌电子 作者:富昌电子 2022-06-16 15:12 次阅读

富昌电子(Future Electronics)一直致力于以专业的技术服务,为客户打造个性化的解决方案,并缩短产品设计周期。在第三代半导体的实际应用领域,富昌电子结合自身的技术积累和项目经验,落笔于SiC相关设计的系列文章。希望以此给到大家一定的设计参考,并期待与您进一步的交流。

上一篇我们先就SiC MOSFET的驱动电压做了一定的分析及探讨(SiC设计分享(一):SiC MOSFET驱动电压的分析及探讨)。本文作为系列文章的第二篇,将针对SiC MOS产品在驱动设计时遇到的寄生导通问题做出详细的分析,从元器件以及应用层面给出一些设计建议,并结合阈值电压的漂移问题做出简单的说明。设计者在实际应用时,需要根据产品的本身定位在二者之间做一个平衡。

1寄生导通产生机理

以下主要探讨关于SiC器件驱动回路设计的要点,而如何选择合适的门极驱动电压也是整个驱动器设计的关键。对于开通来说,通常选择门极15V或18V作为门限值,从而可以配置为具有较好的载流能力或者具有很好的短路耐用性。对于关断来说,通常使用负电压关断最为保险,可以有效的保证可靠关断,减少误触发的机率。

对门极的电容反馈有可能会导致半导体器件产生误导通动作。而如果使用的是SiC器件,那么通常需要考虑米勒电容所带来的电容反馈。由米勒效应带来的电容反馈可能会导致管子的误动作,更有甚者可能导致上下管直通,引起短路现象的发生,以至损坏功率器件,其产生的具体机理可参考下图:

7172beb8-ed3c-11ec-ba43-dac502259ad0.png

在半桥电路拓扑应用中,当低边开关Q2导通时,高边开关Q1的电压变化dVDS/dt。因此,形成了对上管的寄生电容Cgd的充电电流iT。该电流通过米勒电梯Cgd,门极电阻以及电容Cgs形成回路,并对Cgd进行充电 (电容Cgd和Cgs形成一个对VDS进行分压的电容分压器)。当在门极电阻上的电压降超过了上管Q1的阈值开启电压,这时候就发生了所谓的米勒导通或者米勒效应。在此过程中,不断上升的漏极电位通过米勒电容Cgd上拉Q2的门极电压。然而,门极关断电阻试图抵消且拉低电压。但是如果电阻值不足以降低电压,那么电压可能会超过管子的阈值电压,从而致使误触发的可能性,进而导致故障发生。甚至可能损坏SiC器件。

由误触发导致事件发生的风险和严重程度主要取决于特定的操作条件和测试硬件。高母线电压,电压快速上升以及高结温是比较关键的点。这些条件不仅会严重地上拉门极电压,而且会降低阈值。硬件相关的主要影响包括:MOS管内部寄生电容Cgd,Cgs以及门极关断电阻等。

由Cgd和Cgs电容所引起的寄生电压会导致门极误开通的可能性,进而增加整个开关损耗,造成器件损坏风险。参考下图:

7180ed6c-ed3c-11ec-ba43-dac502259ad0.png

△Vgs=△Vds*Cgd/(Cgs+Cgd), 若△Vgs> Vgs(th),则MOS管有误触发的风险。所以我们在产品选型时,需要充分参考器件本身的特性以及相关参数,尽可能选择门限电压高的产品。

2如何减少寄生导通带来的误触发

为了减少器件误差发的概率,提升产品的可靠性,我们可以从器件层面和应用层面触发,考虑对应的措施和方法。

A. 从应用层面上考虑

1增加负压关断电压Vgs off

即使有寄生电容带来的电压△Vgs,当使用负压Vgs off来驱动时,可以抵消部分△Vgs ,从而使得△Vgs小于门限电压Vgs(th)。从而避免误差发的可能性。

富昌设计小建议:需要综合考虑MOS管的寄生参数以Vgs 裕量来选择合适的电压,以确保产品的可靠性。

2使用带米勒(miller)钳位的驱动

在设计驱动时,可以考虑采用带米勒钳位的驱动产品,从而可以有效钳制门极电压,使门极电压不超过开通阈值电压,避免误触发的风险。

富昌设计小建议:可以根据实际应用需求,选择带有米勒钳位或Desat保护的驱动芯片,从而简化系统设计。

B.从器件选型上考虑

1采用较高开通门限值Vgsth的器件

使用较高开通阈值门限电压的器件,可以有效低降低误差发的可能性。

2使用合适变容比Cgd/Cgs的器件

通常来说,在器件选型时,可以根据寄生参数,选择合适变容比的SiC产品,可以有效地降低误触发的风险。

一条粗略估算VGS 裕量的经验方法可供参考,对于600V的SiC产品,最好是选择变容比大于150。即Cgd/Cgs>150。此时可计算出△Vgs<4V。(注,由于各家工艺技术的不同,门限电压也不尽相同,所以并不适合所有的产品。此处仅参考英飞凌的产品)

富昌设计小贴士:此处参考的是英飞凌SiC产品,其门限电压通常在4.5V左右。

3VGS 裕量与VGSTH 漂移的平衡

通过上面的计算和分析可知,虽然增加Vgs off负压可以降低误触发的风险,但是也不是越大越好,因为这会带来门限电压的漂移,且负压越大,由此带来的VGSTH漂移也越大。所以在设计时需要综合考虑二者,寻求一个合理的平衡点。以下示意图描述了这一点。

7180ed6c-ed3c-11ec-ba43-dac502259ad0.png

4总结

富昌电子在本文中,主要针对驱动设计时的寄生导通问题做了详尽的分析和探讨。并从器件选型和应用层面上分别给了几点建议。最后就VGS裕量以及VGSTH漂移做了简单的阐述,由于二者是对立的,实际应用中需要综合考虑两者之间的利弊关系,做出平衡选择,这样既能充分发挥SiC器件的特性,又能保证整个产品的可靠性。

原文标题:富昌电子SiC设计分享(二):碳化硅器件驱动设计之寄生导通问题探讨

文章出处:【微信公众号:富昌电子】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • MOSFET
    +关注

    关注

    147

    文章

    7160

    浏览量

    213180
  • 富昌电子
    +关注

    关注

    1

    文章

    112

    浏览量

    55196
  • 驱动设计
    +关注

    关注

    1

    文章

    111

    浏览量

    15285
  • 寄生
    +关注

    关注

    0

    文章

    5

    浏览量

    6701

原文标题:富昌电子SiC设计分享(二):碳化硅器件驱动设计之寄生导通问题探讨

文章出处:【微信号:富昌电子,微信公众号:富昌电子】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    富昌电子SiC设计分享(三):SiC MOSFET 和Si MOSFET寄生电容在高频电源中的损耗对比

    SiC相关设计的系列文章。希望以此给到大家一定的设计参考,并期待与您进一步的交流。   前两篇文章我们分别探讨了 SiC MOSFET的驱动电压 ,以及 SiC器件驱动设计中的
    发表于 07-07 09:55 2648次阅读
    富昌电子<b class='flag-5'>SiC</b>设计分享(三):<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b> 和Si <b class='flag-5'>MOSFET</b><b class='flag-5'>寄生</b>电容在高频电源中的损耗对比

    为何使用 SiC MOSFET

    要充分认识 SiC MOSFET 的功能,一种有用的方法就是将它们与同等的硅器件进行比较。SiC 器件可以阻断的电压是硅器件的 10 倍,具有更高的电流密度,能够以 10 倍的更快速度在
    发表于 12-18 13:58

    SiC-MOSFET的应用实例

    ,但由于第三代(3G)SiC-MOSFET通电阻更低,晶体管数得以从8个减少到4个。关于效率,采用第三代(3G)SiC-MOSFET时的结果最理想,无论哪种SiC-MOSFET的效率
    发表于 11-27 16:38

    SiC-MOSFET与Si-MOSFET的区别

    电阻低,通道电阻高,因此具有驱动电压即栅极-源极间电压Vgs越高通电阻越低的特性。下图表示SiC-MOSFET通电阻与Vgs的关系。通电阻从Vgs为20V左右开始变化(下降)逐
    发表于 11-30 11:34

    SiC功率模块的栅极驱动其1

    Rg。关断时SiC模块没有像IGBT那样的尾电流,因此显示与通时同样依赖于外置栅极电阻Rg的dV/dt。寄生电容:与IGBT的比较MOSFET(IGBT)存在栅极-漏极(集电极)间的
    发表于 11-30 11:31

    沟槽结构SiC-MOSFET与实际产品

    结构SiC-MOSFET的量产。这就是ROHM的第三代SiC-MOSFET。沟槽结构在Si-MOSFET中已被广为采用,在SiC-MOSFET中由于沟槽结构有利于降低
    发表于 12-05 10:04

    SiC-MOSFET有什么优点

    电导率调制,向漂移层内注入作为少数载流子的空穴,因此通电阻比MOSFET还要小,但是同时由于少数载流子的积聚,在Turn-off时会产生尾电流,从而造成极大的开关损耗。SiC器件漂移层的阻抗比Si器件低
    发表于 04-09 04:58

    SiC功率器件SiC-MOSFET的特点

    电导率调制,向漂移层内注入作为少数载流子的空穴,因此通电阻比MOSFET还要小,但是同时由于少数载流子的积聚,在Turn-off时会产生尾电流,从而造成极大的开关损耗。SiC器件漂移层的阻抗比Si器件低
    发表于 05-07 06:21

    SiC MOSFET SCT3030KL解决方案

    与IGBT相比,SiC MOSFET具备更快的开关速度、更高的电流密度以及更低的通电阻,非常适用于电网转换、电动汽车、家用电器等高功率应用。但是,在实际应用中,工程师需要考虑SiC
    发表于 07-09 04:20

    SiC-MOSFET器件结构和特征

    通过电导率调制,向漂移层内注入作为少数载流子的空穴,因此通电阻比MOSFET还要小,但是同时由于少数载流子的积聚,在Turn-off时会产生尾电流,从而造成极大的开关损耗。  SiC器件漂移层的阻抗
    发表于 02-07 16:40

    碳化硅SiC MOSFET:低通电阻和高可靠性的肖特基势垒二极管

    Toshiba研发出一种SiC金属氧化物半导体场效应晶体管(MOSFET),其将嵌入式肖特基势垒二极管(SBD)排列成格子花纹(check-pattern embedded SBD),以降低通电
    发表于 04-11 15:29

    如何避免功率MOSFET发生寄生

    如何避免功率MOSFET发生寄生通?
    的头像 发表于 09-18 16:54 962次阅读
    如何避免功率<b class='flag-5'>MOSFET</b>发生<b class='flag-5'>寄生</b><b class='flag-5'>导</b>通

    SiC MOSFET 和Si MOSFET寄生电容在高频电源中的损耗对比

    SiC MOSFET 和Si MOSFET寄生电容在高频电源中的损耗对比
    的头像 发表于 12-05 14:31 776次阅读
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b> 和Si <b class='flag-5'>MOSFET</b><b class='flag-5'>寄生</b>电容在高频电源中的损耗对比

    如何避免功率MOSFET发生寄生通?

    如何避免功率MOSFET发生寄生通?
    的头像 发表于 12-06 18:22 1123次阅读
    如何避免功率<b class='flag-5'>MOSFET</b>发生<b class='flag-5'>寄生</b><b class='flag-5'>导</b>通?

    如何更好地驱动SiC MOSFET器件?

    极电压的敏感性比IGBT更高,所以对SiC MOSFET使用高驱动电压的收益更大。为了防止寄生通,SiC
    的头像 发表于 05-13 16:10 634次阅读