0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

光互连为数据中心解耦架构照亮前路

新思科技 来源:新思科技 作者:新思科技 2022-06-16 16:29 次阅读

提到数据中心,也许大家并不觉得自己跟它有什么强关联。顺畅的网购、在线观看自己喜欢的高清视频、随时查看航班飞行情况、高铁站刷脸进站、刷身份证检票、随时掌握世界动态…这些看起来只是打开几个APP就能实现的场景,背后流动着的是海量的数据。这些便利都得益于数据中心所提供的强大算力。

所以,没有数据中心,真的不行。可以说,数据中心对于这个追求万物智能的世界来说是必需品,而日渐庞大的数据量和日益复杂的数据本身让数据中心的架构也在发生重大转变,比如出现了能汇集所有资源的超融合服务器平台。现在还有一种新的趋势,即“数据中心解耦架构”,也就是将资源分散到不同的模块中,并以光学方式进行连接。这条发展路径就是为了能更有效地处理未来日益庞大的工作负载。

数据密集型应用

推动着数字世界不断向前

根据IEEE 802.3以太网带宽评估报告,推动数据增长的相关数字十分震撼:

2020年,接入互联网的设备数量约为290亿台;到2025年,该数字预计会增长至约380亿台

2017年到2020年,每个用户和家庭的平均流量预计增加了近200%

视频是导致带宽激增的一个主要驱动因素,2017年视频所消耗的数据份额为75%(每月约90EB),2020年已达82%(每月约325EB)

社交媒体、电子商务和软件平台等行业的数据密集型企业都在投资建设自己的超大规模数据中心,用于容纳数千至数万台服务器,以提供可扩展性来支持一系列强大的在线业务和交易。

此外,由于机器对机器的通信增加,数据本身也变得越来越复杂,所需的带宽也更多。随着数据量和数据复杂性增加,超融合计算平台应运而生。这类平台依赖PCI Express 和以太网等高速接口来实现高吞吐量连接,并依赖CXL 2.0和CXL 3.0来实现高效的内存共享。服务器的电源、冷却与机架管理将在服务器之间共享,并通过铜互连进行连接。

光互连为数据中心

解耦架构照亮前路

为了让数据中心能够更灵活、更高密度、以及资源分配利用率更高,开发者们正在努力实现数据中心的解耦架构。在解耦架构中,同类资源(存储、计算、网络等)通过光互连进行连接。

这种架构的优势之一就是不会浪费资源:一个工作负载需要一定数量的存储(x)、计算(y)和网络(z)资源,在解耦架构中,每个工作负载所需的资源会被分配好,并从每个模块按需调取,再由光学互连提供用于数据传输的高速线路,其余资源则会释放用于其他工作负载。

相比之下,在超融合服务器中,不管工作负载实际需要多少资源,对于给定作业的所有存储、计算和网络资源都会被锁定,因此会浪费造成一些资源的浪费。

铜互连凭借其高导电性、低成本、柔软性和耐热性,一直发挥着重要作用。目前,铜主要用于服务器机架中。随着网络速度提升,通过铜缆长距离可靠地驱动数据信号所需的功耗和带宽也随之增加。这一趋势为光互连铺平了道路。光互连现已成为机架到机架、房间到房间和建筑物到建筑物配置中的主要连接方式。光互连是通过光来传输信号,因此光互连与金属互连相比,带宽更高、速度更快,延迟和功耗也更低,因而非常适合数据中心的解耦架构。

此外,光互连还可充分利用一些新推出的技术来实现网络基础设施升级,例如支持400G、800G和1.6T以太网的技术。这种便利性是通过使用光缆连接可插拔光学模块来实现的,这类模块为将光纤电缆连接到网络设备这一过程提供了一种相对简单灵活的方式。

随着网络速度增加到400Gbps以上,将电信号驱动到各个模块所需的功耗是个挑战,而这正是共封装光学技术(CPO)在芯片上的用武之地。共封装光学是在单个封装内集成电芯片和光芯片而成。传统上,电子组件和光子组件通过可插拔模块来实现,这些设备连接在PCB的边缘并朝向服务器机架。但是,由于小型化的发展趋势及相关的要求,在单个封装内集成所有功能会更加可行。如果是连接到共封装光学中的封装器件,而不是连接到机架面板中的可插拔模块上,主机SoC与光接口之间的距离会变得更短,因而功耗会更低。

共封装光学技术推动

die-to-die接口IP需求大涨

在系统中采用共封装光学技术意味着,光互连必须支持多芯片模块(MCM),因而也就需要die-to-die控制器和PHY来实现连接。为了在服务器、网络和高性能计算SoC中提供高效的die-to-die连接,这些控制器应针对延迟、带宽、功耗和面积进行优化。循环冗余校验(CRC)和前向纠错(FEC)等功能有助于降低误码率(BER)。至于PHY,开发者一直使用的是铜互连的长距离连接方式,但对于具有数百个PHY通道的大型SoC,这种连接方式逐渐超出物理定律的极限,于是很多开发者开始转向采用可插拔光学模块的Very Short Reach(VSR)PHY。随着共封装光学日益普及,Extra Short Reach(XSR)PHY以及未来的通用芯片高速互连(UCIe)PHY日后可能会更加受欢迎,因为它们可实现将光子芯片放在非常靠近主机芯片的地方,甚至是放在同一个封装基板上。

f84900c8-ec92-11ec-ba43-dac502259ad0.png

新思科技提供了多种解决方案来应对设计解耦数据中心架构时所面临的挑战,其中包括:

DesignWare Die-to-Die 控制器IP

面向每通道112Gbps晶粒间连接的DesignWare XSR PHY IP

面向VSR的DesignWare 112G以太网PHY IP

DesignWare die-to-die控制器IP与DesignWare XSR PHY IP相集成,为端到端的die-to-die链路提供了出色的低延迟性能。这一完整解决方案让开发者无需开发协议转换栈,即可连接到SoC结构。为了进一步实现先进的多裸晶系统设计和集成,新思科技提供了面向2.5D和3D设计的3DIC Compiler统一平台,该平台构建在Fusion Design Platform的通用单数据模型基础架构之上。对于共封装光学器件,新思科技的产品组合中还包含了OptoCompiler,这是一个面向电气与光子芯片设计、布局、仿真和验证的集成平台。

在这个数据驱动的世界,只要上网,我们活动所产生的数据就会在数据中心走一程。为了能够更好地处理更加庞大的数据量以及更加复杂的数据,数据中心的架构也在不断优化和改进,超大规模计算中心和解耦架构也因此诞生并逐渐普及。数据解耦即通过分离每个组件,让工作负载只是用它所需要的资源,从而避免其他架构中存在的资源浪费情况。光互联为数据中心解耦架构提供了高速连接,赋能我们的生活更加“畅通无阻”。

原文标题:数据中心架构升级,用光来传输数据是种怎样的体验?

文章出处:【微信公众号:新思科技】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据中心
    +关注

    关注

    16

    文章

    4686

    浏览量

    71954
  • 新思科技
    +关注

    关注

    5

    文章

    787

    浏览量

    50307
  • 解耦
    +关注

    关注

    0

    文章

    40

    浏览量

    11887
  • 光互连
    +关注

    关注

    0

    文章

    10

    浏览量

    7789

原文标题:数据中心架构升级,用光来传输数据是种怎样的体验?

文章出处:【微信号:Synopsys_CN,微信公众号:新思科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    简述数据中心网络架构的演变

    随着全球对人工智能(AI)的需求不断增长,数据中心作为AI计算的重要基础设施,其网络架构与连接技术的发展变得尤为关键。
    的头像 发表于 10-22 16:23 238次阅读

    Credo新品发布!AEC高速互连如何赋能数据中心

    全球数据中心的井喷式发展下,何种线缆能高效传输庞大的数据?有源电缆AEC能否成为高速互连技术新突破口? 2024年,我国发布了一系列关于数据中心的政策支持,不仅明确算力
    的头像 发表于 10-17 11:09 228次阅读

    怎样保障数据中心不间断电源不断电 提供可靠安全的供配电#数据中心

    数据中心配电系统
    安科瑞王金晶
    发布于 :2024年08月29日 14:51:36

    数据中心布线光缆设计方案

    数据中心布线光缆是指用于数据中心内部和数据中心之间传输光信号的光缆。它由多根光纤组成,每根光纤可以独立传输数据,从而实现高速、大容量的数据
    的头像 发表于 04-29 11:32 513次阅读

    #mpo极性 #数据中心mpo

    数据中心MPO
    jf_51241005
    发布于 :2024年04月07日 10:05:13

    #mpo光纤跳线 #数据中心光纤跳线

    光纤数据中心
    jf_51241005
    发布于 :2024年03月22日 10:18:31

    #光纤弯曲 #光纤衰减 #数据中心光纤

    光纤数据中心
    jf_51241005
    发布于 :2024年03月08日 09:59:50

    AI数据中心架构升级引发800G模块需求激增

    计算需求的战略举措。 为什么需要800G模块? 800G模块需求的激增与数据中心网络架构的变化密切相关。传统的三层架构(包括接入层、聚合
    的头像 发表于 03-05 17:32 585次阅读
    AI<b class='flag-5'>数据中心</b><b class='flag-5'>架构</b>升级引发800G<b class='flag-5'>光</b>模块需求激增

    #MPO预端接 #数据中心机房 #机房布线

    数据中心MPO
    jf_51241005
    发布于 :2024年03月01日 11:12:47

    #永久链路 #信道测试 #数据中心

    数据中心
    jf_51241005
    发布于 :2024年02月23日 10:17:58

    #紧套光缆 #松套光缆 #数据中心

    数据中心光缆
    jf_51241005
    发布于 :2024年01月26日 09:44:11

    微模块数据中心的优势

    微模块数据中心是以模块化、标准化的架构和高效高可靠的UPS、精密空调等灵活组合于一体打造的模块化数据中心基础设施,可实现灵活快速部署、高效节省、智能管理等优点成为企业未来数据中心建设的
    的头像 发表于 01-19 13:53 629次阅读

    #光缆水峰 #综合布线光缆 #数据中心

    数据中心光缆
    jf_51241005
    发布于 :2024年01月15日 09:43:26

    数据中心 3D 机房数字孪生 #数据中心

    3D数据中心
    阿梨是苹果
    发布于 :2023年12月28日 10:02:33

    #预端接光缆 #24芯光缆 #数据中心

    数据中心光缆
    jf_51241005
    发布于 :2023年12月08日 11:01:21