0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

时识科技提出新脉冲神经网络训练方法 助推类脑智能产业落地

科技绿洲 来源:SynSense时识科技 作者:SynSense时识科技 2022-06-20 14:21 次阅读

近日,SynSense时识科技技术团队发表题为“EXODUS: Stable and Efficient Training of Spiking Neural Networks”的文章,在文章中提出了新的脉冲神经网络训练方法EXODUS。研究显示:EXODUS能够大大减低训练复杂程度,更具稳定性,并提升了准确度。

这项研究由SynSense时识科技瑞士技术团队算法应用、机器学习工程师共同完成。具体见:https://arxiv.org/abs/2205.10242v1

Code: https://github.com/synsense/sinabs-exodus

“EXODUS是一种更加严谨的算法,对SLAYER进行了优化,在多种基准数据集中显示出了更快速的收敛和更高的准确性。”

——SynSense时识科技

高级算法总监Sadique Sheik

在如今的机器学习任务中,功耗正在被置于越来越重要的地位。受生物大脑启发的脉冲神经网络尤其在连接事件驱动的传感器及异步硬件时,显示出突出的低功耗、低延迟特征。因此,超低功耗脉冲神经网络也正在被广泛接受。

研究人员设计了不同的方法用于脉冲神经网络训练。当前,训练脉冲神经网络所运用的基于时间的反向传播(BPTT),却较为耗时。来自NUS的Shrestha和Orchard此前提出了一种名为SLAYER的算法,能够相当程度上提升训练速度。然而,SLAYER并未在计算梯度中将神经元膜电位重置机制纳入考量,这也是造成数值不稳定的一大原因。为了对抗这一缺陷,SLAYER引入了梯度缩放超参数,并且需要手动调试。

SynSense时识科技在最新研究中,对SLAYER进行了改善并设计了一种名为EXODUS的算法。EXODUS将神经元膜电位重置机制考虑在内,应用了隐函数定理( Implicit Function Theorem /IFT) 来计算梯度,无需特置梯度缩放,大大减低了训练复杂程度。

SynSense时识科技在此研究过程中演示了3类类脑任务:通过DVS Gesture、Heidelberg Spiking Digits(HSD)、Spiking speech commands (SSC) ,围绕EXODUS及SLAYER进行了对比,EXODUS显示出了较SLAYER更高的准确性。

验证准确度提升及训练提速对比

自成立以来,SynSense时识科技持续助推类脑智能产业落地,同时在这一进程中,于脑科学、神经网络模型、算法、硬件架构、芯片设计、系统级设计、应用、软件等类脑工程相关的各个领域持续创新,对国内外科研领域产生了积极深刻的影响。SynSense时识科技核心团队在类脑芯片领域科研上的实力位于世界最顶级的行列,这也将作为强大驱动,加快SynSense时识科技类脑智能应用落地,为类脑技术的更广泛铺开而形成助力。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4762

    浏览量

    100535
  • 类脑智能
    +关注

    关注

    0

    文章

    3

    浏览量

    1739
  • 时识科技
    +关注

    关注

    0

    文章

    20

    浏览量

    4502
收藏 人收藏

    评论

    相关推荐

    LSTM神经网络训练数据准备方法

    LSTM(Long Short-Term Memory,长短期记忆)神经网络训练数据准备方法是一个关键步骤,它直接影响到模型的性能和效果。以下是一些关于LSTM神经网络
    的头像 发表于 11-13 10:08 205次阅读

    SynSense时科技成功收购瑞士视觉传感器公司iniVation,智能航母蓄势待发

    SynSense时科技今日宣布 成功收购瑞士视觉传感器公司iniVation 100%股权 。随着交割完成,SynSense时科技成为全球首个同时拥有
    发表于 07-19 18:00 466次阅读
    SynSense时<b class='flag-5'>识</b>科技成功收购瑞士<b class='flag-5'>类</b><b class='flag-5'>脑</b>视觉传感器公司iniVation,<b class='flag-5'>类</b><b class='flag-5'>脑</b><b class='flag-5'>智能</b>航母蓄势待发

    ai大模型训练方法有哪些?

    方法增加数据多样性。 模型选择 选择合适的神经网络架构,如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。 损
    的头像 发表于 07-16 10:11 1346次阅读

    神经网络专用硬件实现的方法和技术

    神经网络专用硬件实现是人工智能领域的一个重要研究方向,旨在通过设计专门的硬件来加速神经网络训练和推理过程,提高计算效率和能效比。以下将详细介绍神经
    的头像 发表于 07-15 10:47 962次阅读

    脉冲神经网络怎么训练

    脉冲神经网络(SNN, Spiking Neural Network)的训练是一个复杂但充满挑战的过程,它模拟了生物神经元通过脉冲(或称为尖
    的头像 发表于 07-12 10:13 492次阅读

    怎么对神经网络重新训练

    发生变化,导致神经网络的泛化能力下降。为了保持神经网络的性能,需要对其进行重新训练。本文将详细介绍重新训练神经网络的步骤和
    的头像 发表于 07-11 10:25 416次阅读

    如何利用Matlab进行神经网络训练

    ,使得神经网络的创建、训练和仿真变得更加便捷。本文将详细介绍如何利用Matlab进行神经网络训练,包括网络创建、数据预处理、
    的头像 发表于 07-08 18:26 1669次阅读

    反向传播神经网络和bp神经网络的区别

    神经网络在许多领域都有广泛的应用,如语音识别、图像识别、自然语言处理等。然而,BP神经网络也存在一些问题,如容易陷入局部最优解、训练时间长、对初始权重敏感等。为了解决这些问题,研究者们提出
    的头像 发表于 07-03 11:00 675次阅读

    BP神经网络的原理、结构及 训练方法

    BP神经网络(Backpropagation Neural Network)是一种基于梯度下降算法的多层前馈神经网络,具有强大的非线性拟合能力。 BP神经网络的原理 1.1 神经网络
    的头像 发表于 07-03 10:08 517次阅读

    卷积神经网络训练的是什么

    训练过程以及应用场景。 1. 卷积神经网络的基本概念 1.1 卷积神经网络的定义 卷积神经网络是一种前馈深度学习模型,其核心思想是利用卷积操作提取输入数据的局部特征,并通过多层结构进
    的头像 发表于 07-03 09:15 350次阅读

    如何训练和优化神经网络

    神经网络是人工智能领域的重要分支,广泛应用于图像识别、自然语言处理、语音识别等多个领域。然而,要使神经网络在实际应用中取得良好效果,必须进行有效的训练和优化。本文将从
    的头像 发表于 07-01 14:14 396次阅读

    基于FPGA的计算平台 —PYNQ 集群的无监督图像识别计算系统

    模拟器开源软件,应用广泛。NEST 一大优势是可用于模 拟任何规模的脉冲神经网络,如可模拟哺乳动物的视觉或听觉皮层这样的信息处理模型。也可模拟网络活动的动力学模型,比如层状皮质
    发表于 06-25 18:35

    基于胎心仪的胎儿心脏诊断神经网络

    中有效,实现了多 分类的方法。 SVM中的决策函数可以指定不同的核 函数。第三种是使用CNN对d窗段进行分类,然后通过 投票的方法计算分类的频率。图3所示。 神经网络的主要优点是它们
    发表于 05-14 18:47

    助听器降噪神经网络模型

    抑制任务是语音增强领域的一个重要学科, 随着深度神经网络的兴起,提出了几种基于深度模型的音频处理新方法[1,2,3,4]。然而,这些通常是为离线处理而开发的,不需要考虑实时性。当使用神经网络
    发表于 05-11 17:15

    Kaggle知识点:训练神经网络的7个技巧

    科学神经网络模型使用随机梯度下降进行训练,模型权重使用反向传播算法进行更新。通过训练神经网络模型解决的优化问题非常具有挑战性,尽管这些算法在实践中表现出色,但不能保证它们会及时收敛到一
    的头像 发表于 12-30 08:27 632次阅读
    Kaggle知识点:<b class='flag-5'>训练</b><b class='flag-5'>神经网络</b>的7个技巧