0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种新方法GSConv来减轻模型的复杂度并保持准确性

OpenCV学堂 来源:OpenCV学堂 作者:OpenCV学堂 2022-06-21 10:29 次阅读

目标检测计算机视觉中一项艰巨的下游任务。对于车载边缘计算平台,大模型很难达到实时检测的要求。而且,由大量深度可分离卷积层构建的轻量级模型无法达到足够的准确性。因此本文引入了一种新方法 GSConv 来减轻模型的复杂度并保持准确性。GSConv 可以更好地平衡模型的准确性和速度。并且,提供了一种设计范式,Slim-Neck,以实现检测器更高的计算成本效益。在实验中,与原始网络相比,本文方法获得了最先进的结果(例如,SODA10M 在 Tesla T4 上以 ~100FPS 的速度获得了 70.9% mAP0.5)。

1简介

目标检测是无人驾驶汽车所需的基本感知能力。目前,基于深度学习的目标检测算法在该领域占据主导地位。这些算法在检测阶段有两种类型:单阶阶段和两阶段。两阶段检测器在检测小物体方面表现更好,通过稀疏检测的原理可以获得更高的平均精度(mAP),但这些检测器都是以速度为代价的。单阶段检测器在小物体的检测和定位方面不如两阶段检测器有效,但在工作上比后者更快,这对工业来说非常重要。

类脑研究的直观理解是,神经元越多的模型获得的非线性表达能力越强。但不可忽视的是,生物大脑处理信息的强大能力和低能耗远远超出了计算机。无法通过简单地无休止地增加模型参数的数量来构建强大的模型。轻量级设计可以有效缓解现阶段的高计算成本。这个目的主要是通过使用 Depth-wise Separable Convolution (DSC)操作来减少参数和FLOPs的数量来实现的,效果很明显。

但是,DSC 的缺点也很明显:输入图像的通道信息在计算过程中是分离的。

80e91d56-f0ac-11ec-ba43-dac502259ad0.png

图 1

对于自动驾驶汽车,速度与准确性同样重要。通过 GSConv 引入了 Slim-Neck 方法,以减轻模型的复杂度同时可以保持精度。GSConv 更好地平衡了模型的准确性和速度。在图 1 中,在 SODA10M 的无人驾驶数据集上比较了最先进的 Slim-Neck 检测器和原始检测器的速度和准确度。结果证实了该方法的有效性。

80f4f9f0-f0ac-11ec-ba43-dac502259ad0.png

图2

图2(a)和(b)显示了 DSC 和标准卷积(SC)的计算过程。这种缺陷导致 DSC 的特征提取和融合能力比 SC 低得多。优秀的轻量级作品,如 Xception、MobileNets 和 ShuffleNets,通过 DSC 操作大大提高了检测器的速度。但是当这些模型应用于自动驾驶汽车时,这些模型的较低准确性令人担忧。事实上,这些工作提出了一些方法来缓解 DSC 的这个固有缺陷(这也是一个特性):MobileNets 使用大量的 1×1 密集卷积来融合独立计算的通道信息;ShuffleNets 使用channel shuffle来实现通道信息的交互,而 GhostNet 使用 halved SC 操作来保留通道之间的交互信息。但是,1×1的密集卷积反而占用了更多的计算资源,使用channel shuffle效果仍然没有触及 SC 的结果,而 GhostNet 或多或少又回到了 SC 的路上,影响可能会来从很多方面。

许多轻量级模型使用类似的思维来设计基本架构:从深度神经网络的开始到结束只使用 DSC。但 DSC 的缺陷直接在主干中放大,无论是用于图像分类还是检测。作者相信 SC 和 DSC 可以结合在一起使用。仅通过channel shuffle DSC 的输出通道生成的特征图仍然是“深度分离的”。

810a8d6a-f0ac-11ec-ba43-dac502259ad0.png

图 3

为了使 DSC 的输出尽可能接近 SC,引入了一种新方法——GSConv。如图 3 所示,使用 shuffle 将 SC 生成的信息(密集卷积操作)渗透到 DSC 生成的信息的每个部分。这种方法允许来自 SC 的信息完全混合到 DSC 的输出中,没有花里胡哨的东西。

81249eee-f0ac-11ec-ba43-dac502259ad0.png

图 4

图 4 显示了 SC、DSC 和 GSConv 的可视化结果。GSConv 的特征图与 SC 的相似性明显高于 DSC 与 SC 的相似。当在 Backbone 使用 SC,在Neck使用 GSConv(slim-neck)时,模型的准确率非常接近原始;如果添加一些技巧,模型的准确性和速度就会超过原始模型。采用 GSConv 方法的Slim-Neck可最大限度地减少 DSC 缺陷对模型的负面影响,并有效利用 DSC 的优势。

主要贡献可以总结如下:

引入了一种新方法 GSConv 来代替 SC 操作。该方法使卷积计算的输出尽可能接近 SC,同时降低计算成本;

为自动驾驶汽车的检测器架构提供了一种新的设计范式,即带有标准 Backbone 的 Slim-Neck 设计;

验证了不同 Trick 的有效性,可以作为该领域研究的参考。

2本文方法

2.1 为什么要在Neck中使用GSConv

为了加速预测的计算,CNN 中的馈送图像几乎必须在 Backbone 中经历类似的转换过程:空间信息逐步向通道传输。并且每次特征图的空间(宽度和高度)压缩和通道扩展都会导致语义信息的部分丢失。密集卷积计算最大限度地保留了每个通道之间的隐藏连接,而稀疏卷积则完全切断了这些连接。

GSConv 尽可能地保留这些连接。但是如果在模型的所有阶段都使用它,模型的网络层会更深,深层会加剧对数据流的阻力,显著增加推理时间。当这些特征图走到 Neck 时,它们已经变得细长(通道维度达到最大,宽高维度达到最小),不再需要进行变换。因此,更好的选择是仅在 Neck 使用 GSConv(Slim-Neck + 标准Backbone)。在这个阶段,使用 GSConv 处理 concatenated feature maps 刚刚好:冗余重复信息少,不需要压缩,注意力模块效果更好,例如 SPP 和 CA。

2.2 Slim-Neck

作者研究了增强 CNN 学习能力的通用方法,例如 DensNet、VoVNet 和 CSPNet,然后根据这些方法的理论设计了 Slim-Neck 结构。

1、Slim-Neck中的模块

首先,使用轻量级卷积方法 GSConv 来代替 SC。其计算成本约为 SC 的60%~70%,但其对模型学习能力的贡献与后者不相上下。然后,在 GSConv 的基础上继续引入 GSbottleneck,图5(a)展示了 GSbottleneck 模块的结构。

814ccacc-f0ac-11ec-ba43-dac502259ad0.png

图5

同样,使用一次性聚合方法来设计跨级部分网络 (GSCSP) 模块 VoV-GSCSP。VoV-GSCSP 模块降低了计算和网络结构的复杂性,但保持了足够的精度。图 5 (b) 显示了 VoV-GSCSP 的结构。值得注意的是,如果我们使用 VoV-GSCSP 代替 Neck 的 CSP,其中 CSP 层由标准卷积组成,FLOPs 将平均比后者减少 15.72%。

最后,需要灵活地使用3个模块,GSConv、GSbottleneck 和 VoV-GSCSP。

2、Slim-Neck针对YOLO系列的设计

YOLO 系列检测器由于检测效率高,在行业中应用更为广泛。这里使用 slim-neck 的模块来改造 Scaled-YOLOv4 和 YOLOv5 的 Neck 层。图 6 和图 7 显示了2种 slim-neck 架构。

8159e112-f0ac-11ec-ba43-dac502259ad0.png

图 6

81823d2e-f0ac-11ec-ba43-dac502259ad0.png

图 7

3、免费的改进Tricks

可以在基于 CNNs 的检测器中使用一些局部特征增强方法,结构简单,计算成本低。这些增强方法,注意力机制,可以显著提高模型精度,而且比Neck 简单得多。这些方法包括作用于通道信息或空间信息。SPP 专注于空间信息,它由4个并行分支连接:3个最大池操作(kernel-size为 5×5、9×9 和 13×13)和输入的 shortcut 方式。它用于通过合并输入的局部和全局特征来解决对象尺度变化过大的问题。YOLOv5 作者的 SPP 改进模块 SPPF 提高了计算效率。该效率 增加了近 277.8%。通式为:

819a31ea-f0ac-11ec-ba43-dac502259ad0.png

其中,是 SPPF 模块中第i个分支的最大池化的kernel-size。

81b0e502-f0ac-11ec-ba43-dac502259ad0.png

图 8

图 8 (a) 和 (b) 显示了 SPP 和 SPPF 的结构。SE是一个通道注意力模块,包括两个操作过程:squeeze和excitation。该模块允许网络更多地关注信息量更大的特征通道,而否定信息量较少的特征通道。CBAM 是一个空间通道注意力机制模块。CA 模块是一种新的解决方案,可以避免全局池化操作导致的位置信息丢失:将注意力分别放在宽度和高度两个维度上,以有效利用输入特征图的空间坐标信息。图9(a)、(b)和(c) 显示了 SE、CBAM 和 CA 模块的结构。

81d8cc0c-f0ac-11ec-ba43-dac502259ad0.png

图 9

4、损失和激活函数

IoU 损失对于基于深度学习的检测器具有很大的价值。它使预测边界框回归的位置更加准确。随着研究的不断发展,许多研究人员已经提出了更高级的 IoU 损失函数,例如 GIoU、DIoU、CIoU 和最新的 EIoU。5个损失函数定义如下:

81f6a862-f0ac-11ec-ba43-dac502259ad0.png

其中参数“A”和“B”表示Ground truth边界框的面积和预测边界框的面积;参数“C”表示Ground truth边界框和预测边界框的最小包围框的面积;参数“d”表示封闭框的对角线顶点的欧式距离;参数“ρ”表示Ground truth边界框和预测边界框质心的欧式距离;参数“α”是权衡的指标,参数“v”是评价Ground truth边界框和预测边界框长宽比一致性的指标。

CIoU loss是目前Anchor-based检测器中使用最广泛的损失函数,但CIoU loss仍然存在缺陷:

8218d144-f0ac-11ec-ba43-dac502259ad0.png

其中“δv /δw”是“v”相对于“w”的梯度,“δv/δh”是“v”相对于“h”的梯度。

8227e27e-f0ac-11ec-ba43-dac502259ad0.png

图 10

根据 CIoU 损失的定义,如果,CIoU 损失将退化为DIoU损失,即CIoU损失中添加的惩罚项的相对比例(αv)将不起作用。此外,w和h的梯度符号相反。

因此,这两个变量(w或h)只能在同一方向上更新,同时增加或减少。这不符合实际应用场景,尤其是当 且 $hw^{gt}h>h^{gt}$ 时。EIoU loss没有遇到这样的问题,它直接使用预测边界框的w和h独立作为惩罚项,而不是w和h的比值。图10是这些损失函数的不同评估指标的3个示例。

在深度网络上,使用 Swish 和 Mish 的模型的准确性和训练稳定性通常比 ReLU 差。Swish 和 Mish 都具有无上界和下界、平滑和非单调的特性。它们定义如下:

823c5254-f0ac-11ec-ba43-dac502259ad0.png

在更深的网络上,Mish 的模型准确度略好于 Swish,尽管实际上2条激活函数曲线非常接近。与 Swish 相比,Mish 由于计算成本的增加而消耗更多的训练时间。

3实验

3.1 Trick消融实验

824f61dc-f0ac-11ec-ba43-dac502259ad0.png

82600fd2-f0ac-11ec-ba43-dac502259ad0.png

3.2 损失函数对比

8269c0ae-f0ac-11ec-ba43-dac502259ad0.png

82789f8e-f0ac-11ec-ba43-dac502259ad0.png

3.3 Yolo改进

828f2b8c-f0ac-11ec-ba43-dac502259ad0.png

82b655e0-f0ac-11ec-ba43-dac502259ad0.png

82cd7c2a-f0ac-11ec-ba43-dac502259ad0.png

3.4 可视化结果对比

82dbc000-f0ac-11ec-ba43-dac502259ad0.png

4参考

[1].Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 目标检测
    +关注

    关注

    0

    文章

    204

    浏览量

    15589
  • 无人驾驶汽车

    关注

    17

    文章

    150

    浏览量

    37332
  • 深度学习
    +关注

    关注

    73

    文章

    5491

    浏览量

    120958

原文标题:改进Yolov5 | 用 GSConv+Slim Neck 一步步把 Yolov5 提升到极致!!!

文章出处:【微信号:CVSCHOOL,微信公众号:OpenCV学堂】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    如何提升ASR模型准确性

    提升ASR(Automatic Speech Recognition,自动语音识别)模型准确性是语音识别技术领域的核心挑战之。以下是些提升ASR
    的头像 发表于 11-18 15:14 224次阅读

    一种创新的动态轨迹预测方法

    本文提出了一种动态轨迹预测方法,通过结合历史帧和历史预测结果提高预测的稳定性和准确性。它引入了历史预测注意力模块,以编码连续预测之间的动态关系,
    的头像 发表于 10-28 14:34 268次阅读
    <b class='flag-5'>一种</b>创新的动态轨迹预测<b class='flag-5'>方法</b>

    如何评估 ChatGPT 输出内容的准确性

    评估 ChatGPT 输出内容的准确性复杂的过程,因为它涉及到多个因素,包括但不限于数据的质量和多样模型的训练、上下文的理解、以及
    的头像 发表于 10-25 17:48 495次阅读

    如何保证测长机测量的准确性

    可以通过以下方法保证测长机测量的准确性、设备方面1.定期校准按照规定的时间间隔,将测长机送往专业的计量机构或使用标准器进行校准。校准可以确定测长机的测量误差,对其进行调整,确保测
    的头像 发表于 10-25 16:16 237次阅读
    如何保证测长机测量的<b class='flag-5'>准确性</b>?

    业务复杂度治理方法论--十年系统设计经验总结

    复杂度综述 1、什么是复杂度 软件设计的核心在于降低复杂性。 --《软件设计的哲学》 业界对于复杂度并没有统
    的头像 发表于 09-05 14:11 932次阅读
    业务<b class='flag-5'>复杂度</b>治理<b class='flag-5'>方法</b>论--十年系统设计经验总结

    一种无透镜成像的新方法

    使用OAM-HHG EUV光束对高度周期结构进行成像的EUV聚光显微镜 为了研究微电子或光子元件中的纳米级图案,一种基于无透镜成像的新方法可以实现近乎完美的高分辨率显微镜。 层析成像是一种
    的头像 发表于 07-19 06:20 310次阅读
    <b class='flag-5'>一种</b>无透镜成像的<b class='flag-5'>新方法</b>

    PCB与PCBA工艺复杂度的量化评估与应用初探!

    的问题。另个方面,在工程能 力方面,做了些针对的工作, 达到高质量和低成本的这样个目标。 高
    发表于 06-14 11:15

    一种利用光电容积描记(PPG)信号和深度学习模型对高血压分类的新方法

    了深度神经网络在计算机视觉任务中的有效,并为开发更强大、更复杂的神经网络架构铺平了道路。 ResNet-50是一种深度神经网络架构,由研究人员Kaiming He、XiangyuZhang
    发表于 05-11 20:01

    【大语言模型:原理与工程实践】大语言模型的评测

    推理和演绎推理。在常识推理中,我们评估模型在解决基于常识的问题时的逻辑连贯准确性,例如通过生日前天推断出生日。在数学推理中,我们检验模型
    发表于 05-07 17:12

    轧机牌坊滑板压亏修复的新方法

    电子发烧友网站提供《轧机牌坊滑板压亏修复的新方法.docx》资料免费下载
    发表于 03-14 16:16 0次下载

    氢压机轴承位磨损维修的新方法

    电子发烧友网站提供《氢压机轴承位磨损维修的新方法.docx》资料免费下载
    发表于 03-01 16:23 0次下载

    怎样测试电流探头的准确性以及保证其精准

    了解电流探头的工作原理。电流探头是通过在电路中插入感应线圈实现对电流的测量。当电流通过感应线圈时,会产生个磁场,通过检测磁场的变化测量电流的大小。 为了测试电流探头的准确性,我们
    的头像 发表于 12-14 10:49 576次阅读
    怎样测试电流探头的<b class='flag-5'>准确性</b>以及保证其精准<b class='flag-5'>性</b>

    一种产生激光脉冲新方法

    等离子体中脉冲压缩的概念 英国和韩国的科学家提出了一种产生激光脉冲的新方法,其功率是现有激光脉冲的1000多倍。 科学家们使用计算机模拟联合研究,展示了一种压缩光的新方法,以充分提高光
    的头像 发表于 12-07 06:32 465次阅读
    <b class='flag-5'>一种</b>产生激光脉冲<b class='flag-5'>新方法</b>

    IC封装中快速创建结构的新方法

    IC封装中快速创建结构的新方法
    的头像 发表于 12-06 16:34 552次阅读
    IC封装中快速创建结构的<b class='flag-5'>新方法</b>

    降低Transformer复杂度O(N^2)的方法汇总

    首先来详细说明为什么Transformer的计算复杂度是 。将Transformer中标准的Attention称为Softmax Attention。令 为长度为 的序列, 其维度为 , 。 可看作Softmax Attention的输入。
    的头像 发表于 12-04 15:31 1070次阅读
    降低Transformer<b class='flag-5'>复杂度</b>O(N^2)的<b class='flag-5'>方法</b>汇总