3D机器视觉一直都是前沿的热门领域,视觉传感在当今的机器人应用、自动驾驶应用领域都有着非常重要的地位。借助数字化3D扫描数据,可以提取一个物体的表面积、体积和形体尺寸。在用来捕捉物体物理尺寸的光学技术里,结构光是一类应用颇多的方法。
通过检测图形被投射到另一物体上的扭曲和变形,再经过图像处理和三角剖分算法将这些扭曲和变形转换为3D点云数据。视觉能力与点云生成的精确与否直接相关。当需要进行毫米甚至微米级分辨率的快速高精度扫描时,TI DLP技术的结构光系统在业内可以说是享有盛誉,可以通过将TI的数字微镜器件(DMD)技术与摄像头、传感器、电机和其他外设集成来轻松构建3D点云,能够灵活控制工业、医疗和安全应用的高分辨率精确图形。
DLP技术的核心——DMD成像器件
在DLP技术里,最核心的器件是DMD成像器件。DMD成像器件中排列了很多小镜片,通过数字信号控制每一个镜片单独去做偏转动作,当光线投射在DMD芯片时,根据镜片的偏转方向光线会传导到不同的角度,从而实现显示。最早的DMD器件只有840个微镜,如今一个DMD器件中拥有最多800万个微镜构建于相应的CMOS存储单元上。DMD芯片支持的波长范围下至355nm的紫外线,上至2500nm的红外线,拥有高达32kHz的快速、可编程图形刷新率。这意味着可以实时获取移动物体的3D扫描数据,再通过使用自适应图形集,进一步优化DLP系统对多个物体和环境的扫描速度和准确度。
分辨率是DMD芯片最重要的特征之一,DMD芯片的范围目前可以覆盖很广的像素,最高超过400万像素。在较大的扫描区域内或者是光照强度较强的环境中,较大MP的DMD器件会更适用,机器视觉应用多使用此类器件,小于1-MP的DMD器件一般在便携的低功耗小型设备中更为常见。
针对紫外、可见光以及近红外不同波长的不同反射特性,DLP系统可以调整颜色和照明强度,这些优化让器件能更容易地与各种光源组合,组合用于生物3D识别的近红外波,用于优化金属反射特性的紫外线等等。DLP系统中使用了反射、可靠MEMS微镜的数组开关,对颜色、距离、运动以及环境的最低敏感度提升了器件长时间处于工况下,以及整个温度范围内的性能。
针对3D机器视觉的DLP
对于机器视觉应用来说,如何选择最佳的DLP芯片组取决于检测物体的形体尺寸、图形速度和系统外形尺寸。同时还需要考虑芯片组本身的特性,例如可移植性、分辨率特性、速度特性。
以DLP4500 为例,DLP4500在可移植性上较为突出,可用作空间光调制器SLM,以快速、准确且高效地操控近红外光以及生成图案。虽然这里把它当作了可移植性高的代表,但是其912×1140的分辨率阵列也不低了,加之紧凑的外形,DLP4500 DMD与单元件探测器结合使用可取代昂贵的基于InGaAs阵列的检测器设计。这一特色还体现在器件与多个光源和波长配对后,能够实现更多功能。
超高分辨率的DLP芯片组在机器视觉中有着诸多应用,一般在此类DMD中微镜数会超过四百万。超高分辨率直接体现在对于大型物体的识别直接提升机器视觉的扫描能力。因为其可编程性,在光谱域、空间域、以及时间域中的性能都会优化。准确地说,在器件工作时,能够动态地将图案进行选择和重新排序,有助于提取最准确的3D信息。
至于高速特性,目前最大图像速率是32552Hz(1位图形速率),来自DLP7000,是DLP系列组合中模式速率最快的。对于需要DLP产品组合中的最大像素间距和最快图形速率选项的设计人员而言,这是目前最高性能的选择。
写在最后
在DLP芯片组中,除了DMD,其配套的控制器也很重要。DLP控制器会支持预存储的结构光图像,不需要外部视频处理器来传输图像,这样对于器件的高速显示很有帮助,否则器件很难达到高刷的上限。如果控制器还具有相机同步功能,那将进一步增强图像速率,实现更高性能的3D机器视觉扫描。
(结构光示例,TI)
通过检测图形被投射到另一物体上的扭曲和变形,再经过图像处理和三角剖分算法将这些扭曲和变形转换为3D点云数据。视觉能力与点云生成的精确与否直接相关。当需要进行毫米甚至微米级分辨率的快速高精度扫描时,TI DLP技术的结构光系统在业内可以说是享有盛誉,可以通过将TI的数字微镜器件(DMD)技术与摄像头、传感器、电机和其他外设集成来轻松构建3D点云,能够灵活控制工业、医疗和安全应用的高分辨率精确图形。
DLP技术的核心——DMD成像器件
在DLP技术里,最核心的器件是DMD成像器件。DMD成像器件中排列了很多小镜片,通过数字信号控制每一个镜片单独去做偏转动作,当光线投射在DMD芯片时,根据镜片的偏转方向光线会传导到不同的角度,从而实现显示。最早的DMD器件只有840个微镜,如今一个DMD器件中拥有最多800万个微镜构建于相应的CMOS存储单元上。DMD芯片支持的波长范围下至355nm的紫外线,上至2500nm的红外线,拥有高达32kHz的快速、可编程图形刷新率。这意味着可以实时获取移动物体的3D扫描数据,再通过使用自适应图形集,进一步优化DLP系统对多个物体和环境的扫描速度和准确度。
分辨率是DMD芯片最重要的特征之一,DMD芯片的范围目前可以覆盖很广的像素,最高超过400万像素。在较大的扫描区域内或者是光照强度较强的环境中,较大MP的DMD器件会更适用,机器视觉应用多使用此类器件,小于1-MP的DMD器件一般在便携的低功耗小型设备中更为常见。
针对紫外、可见光以及近红外不同波长的不同反射特性,DLP系统可以调整颜色和照明强度,这些优化让器件能更容易地与各种光源组合,组合用于生物3D识别的近红外波,用于优化金属反射特性的紫外线等等。DLP系统中使用了反射、可靠MEMS微镜的数组开关,对颜色、距离、运动以及环境的最低敏感度提升了器件长时间处于工况下,以及整个温度范围内的性能。
针对3D机器视觉的DLP
对于机器视觉应用来说,如何选择最佳的DLP芯片组取决于检测物体的形体尺寸、图形速度和系统外形尺寸。同时还需要考虑芯片组本身的特性,例如可移植性、分辨率特性、速度特性。
(3D机器视觉DLP方案,TI)
以DLP4500 为例,DLP4500在可移植性上较为突出,可用作空间光调制器SLM,以快速、准确且高效地操控近红外光以及生成图案。虽然这里把它当作了可移植性高的代表,但是其912×1140的分辨率阵列也不低了,加之紧凑的外形,DLP4500 DMD与单元件探测器结合使用可取代昂贵的基于InGaAs阵列的检测器设计。这一特色还体现在器件与多个光源和波长配对后,能够实现更多功能。
超高分辨率的DLP芯片组在机器视觉中有着诸多应用,一般在此类DMD中微镜数会超过四百万。超高分辨率直接体现在对于大型物体的识别直接提升机器视觉的扫描能力。因为其可编程性,在光谱域、空间域、以及时间域中的性能都会优化。准确地说,在器件工作时,能够动态地将图案进行选择和重新排序,有助于提取最准确的3D信息。
(DLP芯片组,TI)
至于高速特性,目前最大图像速率是32552Hz(1位图形速率),来自DLP7000,是DLP系列组合中模式速率最快的。对于需要DLP产品组合中的最大像素间距和最快图形速率选项的设计人员而言,这是目前最高性能的选择。
写在最后
在DLP芯片组中,除了DMD,其配套的控制器也很重要。DLP控制器会支持预存储的结构光图像,不需要外部视频处理器来传输图像,这样对于器件的高速显示很有帮助,否则器件很难达到高刷的上限。如果控制器还具有相机同步功能,那将进一步增强图像速率,实现更高性能的3D机器视觉扫描。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
机器视觉
+关注
关注
162文章
4370浏览量
120307 -
dlp
+关注
关注
6文章
380浏览量
61219 -
毫米波
+关注
关注
21文章
1923浏览量
64799
发布评论请先 登录
相关推荐
解决方案 3D 视觉机器人赋能汽车制造新征程
随着智能化技术的不断发展,汽车制造企业正积极寻求提升智能化水平的途径。富唯智能的3D视觉引导机器人抓取技术为汽车制造企业提供了一种高效、智能的自动化解决方案。
微视传感高性能3D视觉产品亮相2024上海机器视觉展
近日,2024上海机器视觉展在上海新国际博览中心隆重举行,微视传感携最新的高性能3D视觉产品亮相E2馆2121展位,得到广泛关注,这次展会不仅是微视传感展示创新技术的舞台,更是与行业同
海伯森3D线光谱荣获2024机器视觉产业链创新先锋奖
)主办的2024机器视觉技术与应用峰会在深圳成功举行,海伯森荣幸受邀出席活动,与此同时,海伯森核心产品之一的3D线光谱共焦传感器荣获了高工机器人2024
富唯智能案例|3D视觉引导机器人抓取鞋垫上下料
随着制造业对自动化、智能化需求的不断提升,如何实现鞋垫上下料的精准、高效操作成为了企业亟待解决的问题。传统的上下料方式往往依赖人工,存在效率低下、精度不足等问题。而富唯智能的3D视觉引导机器人抓取解决方案,则能够有效解决这些问题
评论