0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于Python对微信好友进行数据分析

马哥Linux运维 来源:马哥Linux运维 作者:马哥Linux运维 2022-06-30 11:17 次阅读

随着微信的普及,越来越多的人开始使用微信。微信渐渐从一款单纯的社交软件转变成了一个生活方式,人们的日常沟通需要微信,工作交流也需要微信。微信里的每一个好友,都代表着人们在社会里扮演的不同角色。

今天这篇文章会基于Python对微信好友进行数据分析,这里选择的维度主要有:性别、头像、签名、位置,主要采用图表和词云两种形式来呈现结果,其中,对文本类信息会采用词频分析和情感分析两种方法。常言道:工欲善其事,必先利其器也。在正式开始这篇文章前,简单介绍下本文中使用到的第三方模块:

  • itchat:微信网页版接口封装Python版本,在本文中用以获取微信好友信息。

  • jieba:结巴分词的 Python 版本,在本文中用以对文本信息进行分词处理。

  • matplotlib:Python 中图表绘制模块,在本文中用以绘制柱形图和饼图

  • snownlp:一个 Python 中的中文分词模块,在本文中用以对文本信息进行情感判断。

  • PIL:Python 中的图像处理模块,在本文中用以对图片进行处理。

  • numpy:Python中 的数值计算模块,在本文中配合 wordcloud 模块使用。

  • wordcloud:Python 中的词云模块,在本文中用以绘制词云图片。

  • TencentYoutuyun:腾讯优图提供的 Python 版本 SDK ,在本文中用以识别人脸及提取图片标签信息。

以上模块均可通过 pip 安装,关于各个模块使用的详细说明,请自行查阅各自文档。

01

数据分析

分析微信好友数据的前提是获得好友信息,通过使用 itchat 这个模块,这一切会变得非常简单,我们通过下面两行代码就可以实现:


itchat.auto_login(hotReload = True) friends = itchat.get_friends(update = True)

同平时登录网页版微信一样,我们使用手机扫描二维码就可以登录,这里返回的friends对象是一个集合,第一个元素是当前用户。所以,在下面的数据分析流程中,我们始终取friends[1:]作为原始输入数据,集合中的每一个元素都是一个字典结构,以我本人为例,可以注意到这里有Sex、City、Province、HeadImgUrl、Signature这四个字段,我们下面的分析就从这四个字段入手:

18cec0c6-f7b5-11ec-ba43-dac502259ad0.jpg

02

好友性别

分析好友性别,我们首先要获得所有好友的性别信息,这里我们将每一个好友信息的Sex字段提取出来,然后分别统计出Male、Female和Unkonw的数目,我们将这三个数值组装到一个列表中,即可使用matplotlib模块绘制出饼图来,其代码实现如下:


def analyseSex(firends):

  sexs = list(map(lambda x:x['Sex'],friends[1:]))  counts = list(map(lambda x:x[1],Counter(sexs).items()))  labels = ['Unknow','Male','Female']  colors = ['red','yellowgreen','lightskyblue']  plt.figure(figsize=(8,5), dpi=80)  plt.axes(aspect=1)  plt.pie(counts, #性别统计结果    labels=labels, #性别展示标签    colors=colors, #饼图区域配色    labeldistance = 1.1, #标签距离圆点距离    autopct = '%3.1f%%', #饼图区域文本格式    shadow = False, #饼图是否显示阴影    startangle = 90, #饼图起始角度    pctdistance = 0.6 #饼图区域文本距离圆点距离  )  plt.legend(loc='upper right',)  plt.title(u'%s的微信好友性别组成' % friends[0]['NickName'])  plt.show()

这里简单解释下这段代码,微信中性别字段的取值有Unkonw、Male和Female三种,其对应的数值分别为0、1、2。通过Collection模块中的Counter()对这三种不同的取值进行统计,其items()方法返回的是一个元组的集合。

该元组的第一维元素表示键,即0、1、2,该元组的第二维元素表示数目,且该元组的集合是排序过的,即其键按照0、1、2 的顺序排列,所以通过map()方法就可以得到这三种不同取值的数目,我们将其传递给matplotlib绘制即可,这三种不同取值各自所占的百分比由matplotlib计算得出。下图是matplotlib绘制的好友性别分布图:

18df1ffc-f7b5-11ec-ba43-dac502259ad0.jpg

03

好友头像

分析好友头像,从两个方面来分析,第一,在这些好友头像中,使用人脸头像的好友比重有多大;第二,从这些好友头像中,可以提取出哪些有价值的关键字。

这里需要根据HeadImgUrl字段下载头像到本地,然后通过腾讯优图提供的人脸识别相关的API接口,检测头像图片中是否存在人脸以及提取图片中的标签。其中,前者是分类汇总,我们使用饼图来呈现结果;后者是对文本进行分析,我们使用词云来呈现结果。关键代码如下所示:


def analyseHeadImage(frineds):

 # Init Path  basePath = os.path.abspath('.')  baseFolder = basePath + '\HeadImages\' if(os.path.exists(baseFolder) == False):   os.makedirs(baseFolder)   # Analyse Images  faceApi = FaceAPI()  use_face = 0 not_use_face = 0 image_tags = ''  for index in range(1,len(friends)):   friend = friends[index]   # Save HeadImages   imgFile = baseFolder + '\Image%s.jpg' % str(index)   imgData = itchat.get_head_img(userName = friend['UserName'])   if(os.path.exists(imgFile) == False):    with open(imgFile,'wb') as file:     file.write(imgData)     # Detect Faces   time.sleep(1)   result = faceApi.detectFace(imgFile)   if result == True:    use_face += 1  else:    not_use_face += 1    # Extract Tags   result = faceApi.extractTags(imgFile)   image_tags += ','.join(list(map(lambda x:x['tag_name'],result)))   labels = [u'使用人脸头像',u'不使用人脸头像']  counts = [use_face,not_use_face]  colors = ['red','yellowgreen','lightskyblue']  plt.figure(figsize=(8,5), dpi=80)  plt.axes(aspect=1)  plt.pie(counts, #性别统计结果    labels=labels, #性别展示标签    colors=colors, #饼图区域配色    labeldistance = 1.1, #标签距离圆点距离    autopct = '%3.1f%%', #饼图区域文本格式    shadow = False, #饼图是否显示阴影    startangle = 90, #饼图起始角度    pctdistance = 0.6 #饼图区域文本距离圆点距离  )  plt.legend(loc='upper right',)  plt.title(u'%s的微信好友使用人脸头像情况' % friends[0]['NickName'])  plt.show()   image_tags = image_tags.encode('iso8859-1').decode('utf-8')  back_coloring = np.array(Image.open('face.jpg'))  wordcloud = WordCloud(   font_path='simfang.ttf',   background_color="white",   max_words=1200,   mask=back_coloring,   max_font_size=75,   random_state=45,   width=800,   height=480,   margin=15 )   wordcloud.generate(image_tags)  plt.imshow(wordcloud)  plt.axis("off")  plt.show()

这里我们会在当前目录新建一个HeadImages目录,用于存储所有好友的头像,然后我们这里会用到一个名为FaceApi类,这个类由腾讯优图的SDK封装而来,这里分别调用了人脸检测和图像标签识别两个API接口,前者会统计”使用人脸头像”和”不使用人脸头像”的好友各自的数目,后者会累加每个头像中提取出来的标签。其分析结果如下图所示:

18ecfd48-f7b5-11ec-ba43-dac502259ad0.jpg

可以注意到,在所有微信好友中,约有接近1/4的微信好友使用了人脸头像, 而有接近3/4的微信好友没有人脸头像,这说明在所有微信好友中对”颜值 “有自信的人,仅仅占到好友总数的25%,或者说75%的微信好友行事风格偏低调为主,不喜欢用人脸头像做微信头像。

其次,考虑到腾讯优图并不能真正的识别”人脸”,我们这里对好友头像中的标签再次进行提取,来帮助我们了解微信好友的头像中有哪些关键词,其分析结果如图所示:

通过词云,我们可以发现:在微信好友中的签名词云中,出现频率相对较高的关键字有:女孩、树木、房屋、文本、截图、卡通、合影、天空、大海。这说明在我的微信好友中,好友选择的微信头像主要有日常、旅游、风景、截图四个来源。

好友选择的微信头像中风格以卡通为主,好友选择的微信头像中常见的要素有天空、大海、房屋、树木。通过观察所有好友头像,我发现在我的微信好友中,使用个人照片作为微信头像的有15人,使用网络图片作为微信头像的有53人,使用动漫图片作为微信头像的有25人,使用合照图片作为微信头像的有3人,使用孩童照片作为微信头像的有5人,使用风景图片作为微信头像的有13人,使用女孩照片作为微信头像的有18人,基本符合图像标签提取的分析结果。

04

好友签名

分析好友签名,签名是好友信息中最为丰富的文本信息,按照人类惯用的”贴标签”的方法论,签名可以分析出某一个人在某一段时间里状态,就像人开心了会笑、哀伤了会哭,哭和笑两种标签,分别表明了人开心和哀伤的状态。

这里我们对签名做两种处理,第一种是使用结巴分词进行分词后生成词云,目的是了解好友签名中的关键字有哪些,哪一个关键字出现的频率相对较高;第二种是使用SnowNLP分析好友签名中的感情倾向,即好友签名整体上是表现为正面的、负面的还是中立的,各自的比重是多少。这里提取Signature字段即可,其核心代码如下:

def analyseSignature(friends):  signatures = ''  emotions = []  pattern = re.compile("1fd.+")  for friend in friends:   signature = friend['Signature']   if(signature != None):    signature = signature.strip().replace('span', '').replace('class', '').replace('emoji', '')    signature = re.sub(r'1f(d.+)','',signature)    if(len(signature)>0):     nlp = SnowNLP(signature)     emotions.append(nlp.sentiments)     signatures += ' '.join(jieba.analyse.extract_tags(signature,5))  with open('signatures.txt','wt',encoding='utf-8') as file:    file.write(signatures)  # Sinature WordCloud  back_coloring = np.array(Image.open('flower.jpg'))  wordcloud = WordCloud(   font_path='simfang.ttf',   background_color="white",   max_words=1200,   mask=back_coloring,   max_font_size=75,   random_state=45,   width=960,   height=720,   margin=15 )  wordcloud.generate(signatures)  plt.imshow(wordcloud)  plt.axis("off")  plt.show()  wordcloud.to_file('signatures.jpg')  # Signature Emotional Judgment  count_good = len(list(filter(lambda x:x>0.66,emotions)))  count_normal = len(list(filter(lambda x:x>=0.33 and x<=0.66,emotions)))  count_bad = len(list(filter(lambda x:x<0.33,emotions)))  labels = [u'负面消极',u'中性',u'正面积极']  values = (count_bad,count_normal,count_good)  plt.rcParams['font.sans-serif'] = ['simHei']  plt.rcParams['axes.unicode_minus'] = False plt.xlabel(u'情感判断')  plt.ylabel(u'频数')  plt.xticks(range(3),labels)  plt.legend(loc='upper right',)  plt.bar(range(3), values, color = 'rgb')  plt.title(u'%s的微信好友签名信息情感分析' % friends[0]['NickName'])  plt.show()

通过词云,我们可以发现:在微信好友的签名信息中,出现频率相对较高的关键词有:努力、长大、美好、快乐、生活、幸福、人生、远方、时光、散步。

通过以下柱状图,我们可以发现:在微信好友的签名信息中,正面积极的情感判断约占到55.56%,中立的情感判断约占到32.10%,负面消极的情感判断约占到12.35%。这个结果和我们通过词云展示的结果基本吻合,这说明在微信好友的签名信息中,约有87.66%的签名信息,传达出来都是一种积极向上的态度。

191c39e6-f7b5-11ec-ba43-dac502259ad0.png

05

好友位置

分析好友位置,主要通过提取Province和City这两个字段。Python中的地图可视化主要通过Basemap模块,这个模块需要从国外网站下载地图信息,使用起来非常的不便。

百度的ECharts在前端使用的比较多,虽然社区里提供了pyecharts项目,可我注意到因为政策的改变,目前Echarts不再支持导出地图的功能,所以地图的定制方面目前依然是一个问题,主流的技术方案是配置全国各省市的JSON数据。

这里我使用的是BDP个人版,这是一个零编程的方案,我们通过Python导出一个CSV文件,然后将其上传到BDP中,通过简单拖拽就可以制作可视化地图,简直不能再简单,这里我们仅仅展示生成CSV部分的代码:

def analyseLocation(friends):  headers = ['NickName','Province','City']  with open('location.csv','w',encoding='utf-8',newline='',) as csvFile:   writer = csv.DictWriter(csvFile, headers)   writer.writeheader()   for friend in friends[1:]:    row = {}    row['NickName'] = friend['NickName']    row['Province'] = friend['Province']    row['City'] = friend['City']    writer.writerow(row)

下图是BDP中生成的微信好友地理分布图,可以发现:我的微信好友主要集中在宁夏和陕西两个省份。

19324a06-f7b5-11ec-ba43-dac502259ad0.png

06

总结

这篇文章是我对数据分析的又一次尝试,主要从性别、头像、签名、位置四个维度,对微信好友进行了一次简单的数据分析,主要采用图表和词云两种形式来呈现结果。总而言之一句话,”数据可视化是手段而并非目的”,重要的不是我们在这里做了这些图出来,而是从这些图里反映出来的现象,我们能够得到什么本质上的启示,希望这篇文章能让大家有所启发。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据分析
    +关注

    关注

    2

    文章

    1452

    浏览量

    34077
  • python
    +关注

    关注

    56

    文章

    4800

    浏览量

    84820

原文标题:用Python爬了微信好友,原来他们是这样的人...

文章出处:【微信号:magedu-Linux,微信公众号:马哥Linux运维】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    Mathematica 在数据分析中的应用

    ,在数据分析领域发挥着重要作用。 1. 数据导入 在进行数据分析之前,首先需要将数据导入到Mathematica中。Mathematica支持多种
    的头像 发表于 12-26 15:41 123次阅读

    zeta的定义和应用 如何使用zeta进行数据分析

    Zeta(ζ)电位是描述悬浮粒子在液体中移动时所产生的电位差的一个物理量,以下是对其定义、应用以及如何进行数据分析的详细解释: Zeta电位的定义 Zeta电位是通过理论推导和实验测量得到的,它反映
    的头像 发表于 12-19 18:10 876次阅读

    如何使用SQL进行数据分析

    使用SQL进行数据分析是一个强大且灵活的过程,它涉及从数据库中提取、清洗、转换和聚合数据,以便进行进一步的分析和洞察。 1.
    的头像 发表于 11-19 10:26 330次阅读

    eda与传统数据分析的区别

    进行初步的探索和理解,发现数据中潜在的模式、关系、异常值等,为后续的分析和建模提供线索和基础。 方法论 :EDA强调数据的真实分布和可视化,使用多种图表和可视化工具来展示
    的头像 发表于 11-13 10:52 367次阅读

    为什么选择eda进行数据分析

    数据科学领域,数据分析是一个复杂且多步骤的过程,它涉及到数据的收集、清洗、探索、建模和解释。在这些步骤中,探索性数据分析(EDA)扮演着至关重要的角色。 1. 理解
    的头像 发表于 11-13 10:41 263次阅读

    raid 在大数据分析中的应用

    RAID(Redundant Array of Independent Disks,独立磁盘冗余阵列)在大数据分析中的应用主要体现在提高存储系统的性能、可靠性和容量上。以下是RAID在大数据分析
    的头像 发表于 11-12 09:44 267次阅读

    云计算在大数据分析中的应用

    和处理大规模的数据集。通过云计算平台,用户可以快速构建数据仓库,将海量数据进行存储、管理和分析。这种能力使得企业能够高效地处理PB级别的
    的头像 发表于 10-24 09:18 509次阅读

    使用AI大模型进行数据分析的技巧

    使用AI大模型进行数据分析的技巧涉及多个方面,以下是一些关键的步骤和注意事项: 一、明确任务目标和需求 在使用AI大模型之前,首先要明确数据分析的任务目标,这将直接影响模型的选择、数据收集和处理方式
    的头像 发表于 10-23 15:14 889次阅读

    IP 地址大数据分析如何进行网络优化?

    一、大数据分析在网络优化中的作用 1.流量分析数据分析可以对网络中的流量进行实时监测和分析,了解网络的使用情况和流量趋势。通过对流量
    的头像 发表于 10-09 15:32 257次阅读
    IP 地址大<b class='flag-5'>数据分析</b>如何<b class='flag-5'>进行</b>网络优化?

    网络爬虫,Python数据分析

    电子发烧友网站提供《网络爬虫,Python数据分析.pdf》资料免费下载
    发表于 07-13 09:27 1次下载

    数据分析除了spss还有什么

    数据分析是当今世界中一个非常重要的领域,它涉及到从大量数据中提取有用信息、发现模式和趋势,并为决策提供支持。SPSS(Statistical Package for the Social
    的头像 发表于 07-05 15:01 652次阅读

    数据分析的工具有哪些

    开发的一款电子表格软件,广泛应用于数据分析领域。它具有以下特点: 数据整理:Excel提供了丰富的数据整理功能,如排序、筛选、查找和替换等。 数据计算:Excel内置了数百种函数,可以
    的头像 发表于 07-05 14:54 894次阅读

    数据分析有哪些分析方法

    。 描述性分析 描述性分析数据分析的第一步,它的目的是对数据进行描述和总结。描述性分析通常包括
    的头像 发表于 07-05 14:51 628次阅读

    求助,关于AD采集到的数据分析问题

    问题描述:使用AD采集一个10Hz到2MHz的脉冲,脉冲底部可能大于零,由采集到的数据分析出该脉冲的上升时间,幅值和占空比。 备注:在分析的时候已经知道脉冲的频率,精度为2X10^-5. 在分析
    发表于 05-09 07:40

    态势数据分析系统软件

    处理、分析和挖掘态势数据的工具。它结合了数据集成、地图制作、数据分析与挖掘以及可视化展示等多种功能 这类软件能够集成多种来源的地理数据和其他
    的头像 发表于 04-22 11:36 458次阅读