0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于Xilinx Zynq UltraScale+ RFSoC ZCU216评估套件详细内容介绍

FPGA技术江湖 来源:赛灵思产工程师 作者:Shengjie Li 2022-07-04 10:55 次阅读

Zynq UltraScale+ RFSoC 是业界首款单芯片自适应无线电平台,在一款芯片内集成射频直采数据转换器、单芯片软决策前向纠错核(SD-FEC)、FPGA逻辑、完整的ARM处理器子系统和高速收发器等。

第三代RFSoC器件与前几代产品相比,射频输入输出频率响应已扩展至全面支持6GHz以下频段,可帮助用户开发尖端RF设计,例如大规模MIMO无线电、5G基带、固定无线接入、测试测量与相控阵雷达等等。第三代器件14bit分辨率ADC最大采样速率增加到5.0GSPS,14bit分辨率DAC最大采样速率增加到10.0GSPS。用户可以参考XMP105详细了解Zynq RFSoC系列产品具体参数及选型指南。

本次将分上下篇介绍基于Xilinx Zynq UltraScale+ RFSoC ZCU216评估套件的详细内容:

1. 第三代RFSoC 器件时钟转发特性。

2. ZCU216时钟结构及可行的时钟设计方案。

3. 在Vivado中创建基于IP集成器(IP Integrator)的设计。

4. 在Vitis中创建基于ARM的BareMetal程序设计。

5. 代码简要分析。

6. 硬件环境及测试结果。

本文用于示例的软件工具、驱动版本、硬件版本及文档版本如下:

1. ZCU216 Rev-A02(Engineer Sample)

2. CLK104

3. Vivado 2021.2 + Vitis 2021.2

4. PG269 V2.6 October 27, 2021

5. Software Driver: rfdc v11.0

1. 第三代RFSoC 器件时钟转发特性:

RFSoC在芯片内集成了数据转换器,第三代RFSoC系列器件均包含4个ADC Tile和4个DAC Tile,每个ADC和DAC Tile内可能包含1个(ZU43DR)或2个(ZU47DR/48DR)或者4个(ZU49DR)Channel,这取决于芯片型号。以ZCU216开发板上的芯片为例,ZU49DR的每个ADC Tile内包含4路ADC,每个DAC Tile内包含4路DAC。

每个Tile都可以独立配置,工作在不同的采样时钟频率上,采样时钟可以来自于外部高频时钟输入,可以来自于每个Tile内部PLL倍频后的时钟,也可以来自于其他Tile分发的参考时钟。

第三代RFSoC器件相比之前几代产品引入了时钟转发特性,不再需要为每个Tile都提供独立的采样时钟,节省了引脚数量,降低了外围电路的复杂度。

时钟转发的方式共分为两种,一种是参考时钟转发,一种是采样时钟转发。

所谓参考时钟转发,是指外部时钟芯片提供低噪声低频时钟到一个ADC/DAC Tile的专用时钟管脚,该时钟将在Tile间转发,通过每个Tile内的PLL倍频出所需的采样时钟;

f77e3dd0-e62e-11ec-ba43-dac502259ad0.png

而采样时钟转发有两种途径,一是从外部时钟芯片直接提供低噪声高频的采样时钟到一个ADC/DAC Tile的专用时钟管脚,采样时钟将在Tile间分发,无需通过内部PLL倍频,直接提供给ADC/DAC Channel作为采样时钟;

f7cf8b7c-e62e-11ec-ba43-dac502259ad0.png

时钟芯片提供低噪声低频时钟到一个ADC/DAC Tile的专用时钟管脚,该时钟在此Tile内通过PLL倍频到采样频率,随后将此采样时钟在Tile间分发。

f7ff3a3e-e62e-11ec-ba43-dac502259ad0.png

以上仅为时钟分发方式的简化解释,会有一些使用的限制和建议,建议用户参考PG269 Chapter 4 Clocking-On-chip Clock Distribution章节阅读。

用户也可以打开Vivado,选择器件型号后在RF Data Converter IP内根据原理图和目标设计进行配置,如果时钟设计存在问题,工具会给予一定的报警和提示。

值得注意的是,RF Data Converter IP内的选项和上述的两种分发方式不是完全匹配的。当使用采样时钟分发方式时,在IP内需要勾选的是Input Refclk。ADC Tile 1(Tile 225)和DAC Tile 1(Tile 229)作为采样时钟输入源,其他的ADC和DAC Tile选择Tile 1作为时钟源。

f83b639c-e62e-11ec-ba43-dac502259ad0.png

2. ZCU216时钟结构及可行的时钟设计方案:

本节仅覆盖ZCU216开发板与RF数据转换器相关的时钟部分,这部分时钟均由扩展子卡CLK104提供。

f8644eec-e62e-11ec-ba43-dac502259ad0.png

如下所示为CLK104板上的功能示意图:

f8af68dc-e62e-11ec-ba43-dac502259ad0.png

通过一个时钟芯片为DAC提供接近10GSPS的低噪声采样时钟是很难实现的,CLK104板采用两级PLL方案。

第一级LMK04828B是一个双环路抖动清除器和时钟发生器,一级回路的参考输入可为板上的10MHz TCXO、外部参考时钟(比如从SMA100B输出低噪声时钟),或SFP恢复时钟。二级回路的参考输入为板上的160MHz VCXO,可输出低相噪的时钟、同步信号。其中DAC_REFCLK和ADC_REFCLK可作为ADC/DAC低频参考时钟输入;PL_CLK,AMS_SYSREF和PL_SYSREF均用作MTS(Multi-Tile Synchronization)应用,我们将在未来博客中详细描述MTS相关应用;

第二级LMX2594接收第一级输出时钟,将其倍频到采样频率,直接输出到ADC/DAC Tile。

这三颗时钟芯片均由SPI接口控制,板上有一颗IIC to SPI桥接芯片,FPGA通过IIC接口对此转换芯片进行控制,进而控制三颗时钟芯片。除此以外还有一种更为简单的方式,ZCU216板上带有一颗TI的MSP430 MCU,其IIC接口通过IIC Switch也可以连接到这几颗时钟IC上,用户可以参考XTP580,使用BoardUI实现对时钟的配置。

ZCU216上的芯片型号为ZU49DR,其4个ADC Tile和4个DAC Tile都有专用的模拟时钟输入管脚,但只有两个ADC Tile(Bank 225/226)和两个DAC Tile(Bank 229/230)的时钟管脚被引出。如下表所示为详细连接关系:

f8e63394-e62e-11ec-ba43-dac502259ad0.png

本文后续将会展示以下的时钟方案配置:

使用LMX2594输出高频采样时钟分发方式,从ADC Tile1和DAC Tile1输入。设定ADC 采样频率为2000MHz,DAC采样频率为6400MHz。

f9147e48-e62e-11ec-ba43-dac502259ad0.png

3. 在Vivado中创建基于IP集成器

(IP Integrator)的设计

本节需要读者对基于Vivado的IPI设计比较熟悉,将不会对较简单的操作步骤进行详述。如何使用此Blog提供的TCL文件重建Vivado工程请参考附录。

Ø 打开Vivado 2021.2,新建工程,名为rfsoc_zcu216_clocking。

Ø 选择板卡ZCU216 EVB或ZCU216 ES EVB,根据板卡型号决定,二者bitstream不兼容。

Ø 在工程界面内创建Block Design,默认名为design_1。

Ø添加Zynq UltraScale+ MPSoC IP,Run Block automation,使用板卡默认配置。

Ø 修改Zynq配置,PS-PL Configuration界面下将AXI HPM0/1 FPD接口关闭,勾选AXI HPM0 LPD,其他保持默认。

Ø 添加Zynq UltraScale+ RF Data Converter IP。

Ø 修改RF Data Converter配置。

1. 切换Converter Setup为Advanced模式。

2. 使能全部ADC和DAC的每个Channel,其他所有配置大多数都是可以通过API修改的,保持默认即可,后续将会介绍如何通过API修改。

3. 修改全部ADC的Samples per AXI4-Stream Cycle为8,DAC为16,这是为了避免AXI-Stream接口时钟频率超出器件频率上限。

f95c7f86-e62e-11ec-ba43-dac502259ad0.png

4.在System Clocking界面按下图配置,如上一节所示,我们将先按ADC 2GSPS,DAC 6.4GSPS进行配置,使用采样时钟分发方式。IP的输出时钟可以用于倍频产生AXI4-Stream数据接口的时钟,因此我们先保持和Fabric clock 频率8分频的关系进行配置。

f98044ca-e62e-11ec-ba43-dac502259ad0.png

5. Advanced界面保持默认,无需勾选。

Ø Run Block Automation,将RFDC IP AXI-Lite接口通过Interconnect连接到Zynq LPD接口实现地址映射。

Ø 为AXI4-Stream接口提供合适的时钟和复位。

1. 点击BD界面上方Run Block Automation。

2. 由于所有ADC/DAC采样率是一致的,可以使用一个MMCM产生ADC/DAC所需的数字时钟。在弹出界面中勾选ADC 0-3的时钟源为ADC0,DAC0-3的时钟源为DAC0。

f9a39362-e62e-11ec-ba43-dac502259ad0.png

3. 工具将会自动例化两个Clocking Wizard IP,adc0_clk_wiz使用IP输出的31.25MHz的时钟作为输入,倍频输出200MHz时钟供给Master接口。Dac0_clk_wiz使用IP输出的50MHz时钟作为输入,倍频输出400MHz时钟供给给Slave接口。

f9f46be8-e62e-11ec-ba43-dac502259ad0.png

4. 修改clocking wizard复位极性为低电平有效。

fa1b0c80-e62e-11ec-ba43-dac502259ad0.png

5.例化两个Processor System Reset IP,并连接peripheral_aresetn到RFDC IP的s/m_axis_aresetn管脚上。其中Slave AXI-Stream接口是DAC的数字接口,Master AXI-Stream是ADC的数字接口。

6. 例化一个AXI GPIO IP,用于控制时钟板CLK104上的SPI SDO选通。设定为输出,位宽为2,初始值设定为0x0。

fa8bfc42-e62e-11ec-ba43-dac502259ad0.png

7. 引出AXI GPIO IP,命名为spi_mux。

fab22fd4-e62e-11ec-ba43-dac502259ad0.png

Ø 完整的Block Design大致如下:

faf3c2dc-e62e-11ec-ba43-dac502259ad0.png

Ø 在BD中右键Validate design,确保没有报错。

fb2626be-e62e-11ec-ba43-dac502259ad0.png

Ø 创建顶层文件,右键BD,Create HDL Wrapper,选择Let Vivado manage wrapper and auto-update。

fb418c60-e62e-11ec-ba43-dac502259ad0.png

Ø 添加管脚约束,RFDC相关管脚为专有管脚,IP内包含管脚约束,用户无需为此添加。

fb742e0e-e62e-11ec-ba43-dac502259ad0.png

Ø 生成bitstream,检查工程是否有时序违例。

Ø 导出工程XSA文件,File-Export-Export Hardware,勾选Include Bitstream,选择导出目录。

fbe112d0-e62e-11ec-ba43-dac502259ad0.png

在Vitis中创建基于ARM的BareMetal程序设计:

详细流程:

Ø 打开Vitis,选择一个Vitis工作目录。

Ø Create Application,选择一个新的XSA文件,导入从Vivado获得的XSA文件。

fc59db66-e62e-11ec-ba43-dac502259ad0.png

Ø为工程取一个名,以Empty Application(C)为模板新建工程。

fc7164b6-e62e-11ec-ba43-dac502259ad0.png

Ø勾选BSP中的库,双击platform.spr,选中standalone_psu_cortexa53_0下的Board Support Package,选择Modify BSP Settings,勾选libmetal库,保存。

fc993126-e62e-11ec-ba43-dac502259ad0.png

Ø 导入源码,从附件中找到main.c,可以直接拷贝到工程src目录下,或者右键src目录选择Import sources。

fcd14b9c-e62e-11ec-ba43-dac502259ad0.png

Ø 添加工程Symbol。右键工程选择C/C++ build settings,在Symbols中添加__BAREMETAL__。

fd002a70-e62e-11ec-ba43-dac502259ad0.png

fd358652-e62e-11ec-ba43-dac502259ad0.png

Ø 编译工程,如果有宏定义相关报错,应该是底层IP命名问题,可以在xparameters.h中找到实际的宏定义。

fd50b81e-e62e-11ec-ba43-dac502259ad0.png

如何添加metal log:

Libmetal库提供了metal_log API以便于用户调试,用户可以参考AR#71068使能打印功能:

https://support.xilinx.com/s/article/71068

Metal_log提供了8个等级的打印信息,用户可以根据项目所处的不同阶段决定开启哪一个等级的调试信息。

fd65eafe-e62e-11ec-ba43-dac502259ad0.png

代码简要分析:

整体流程大致如下:

1. Libmetal初始化。

2. RFDC IP初始化。

3. IIC/GPIO/SPI Mux初始化。

4. CLK104时钟IC复位。

5. CLK104时钟配置。

6. 设置RFDC Clock Distribution。

7. 查看RFDC IP状态。

这里主要强调一下三个部分,一是时钟配置,二是Clock Distribution,三是状态检查。

如前面章节所说,FPGA通过IIC接口与IIC to SPI桥接芯片进行交互,桥接芯片通过SPI接口控制时钟IC。配置数据在本案例中是记录在数组中的,数据来源于TI的TICS Pro软件。用户需要根据实际的需求,在软件中选择时钟IC的输入输出频率和管脚复用,由软件导出一组针对此时钟IC的寄存器数值。

fd7f8612-e62e-11ec-ba43-dac502259ad0.png

Clock Dsitribution部分,IP驱动提供了相关的结构体和API,具体组成部分可以参考PG269文档相关部分。以下是DAC Tile的时钟分发网络配置代码:

fda8cb76-e62e-11ec-ba43-dac502259ad0.png

在我们目前的设计中,使用LMX2594产生的高频参考时钟输入到DAC Tile1,因此结构体中指定source tile为XRFDC_TILE_ID1;此时钟分发组内最北的是DAC Tile3,最南的是DAC Tile0;分发类型是参考钟分发,因此选择XRFDC_DIST_OUT_RX;参考钟频率为6400,采样率为6400;将此结构体传入到XRFdc_SetClkDistribution函数中,函数内部会检查当前配置是否有效,并在配置结束以后启动tile。

检查IP状态是最后一步,IP启动过程共有15个阶段,只有当Tile状态达到0xf的时候说明此Tile正常启动,接下来可以正常工作,如果发现Tile状态停在某一步,可以对照PG269 Power-on Sequence Steps章节查找原因。

fde36ede-e62e-11ec-ba43-dac502259ad0.png

硬件环境及测试结果:

建议按照XTP587完成板子硬件环境setup:

1. 连接电源USB-JTAG。

2. 安装CLK104时钟板。

3. 使用出厂自带的CARLISLE连接线,将CLK104 ADC/DAC参考钟接到板上。

4. 设置启动模式为JTAG。

fe086d88-e62e-11ec-ba43-dac502259ad0.png

测试结果:

由打印的IP status对比可见,时钟成功配置,所有DAC和ADC Tile均进入到状态0xf。

fe441054-e62e-11ec-ba43-dac502259ad0.png

附录:

此文章提供重建工程TCL脚本,用户可以下载附件,按照如下步骤重建Vivado工程:

1. 打开Vivado 2021.2。

-对Windows系统,双击桌面Vivado图标或到此目录寻找执行文件C:XilinxVivado2021.2invivado.bat。

- 对Linux系统,source/settings64.sh。

2. 在Vivado console中,将当前目录更换到下载的附件目录。Cd。

3. Source 。/vivado_project.tcl。

Vitis工程需要用户自行创建,本文会提供测试源代码。

原文标题:开发者分享|第三代Zynq RFSoC器件射频数据转换器应用: 时钟设计

文章出处:【微信公众号:FPGA技术江湖】欢迎添加关注!文章转载请注明出处。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1624

    文章

    21611

    浏览量

    601091
  • 单芯片
    +关注

    关注

    3

    文章

    416

    浏览量

    34534
  • Xilinx
    +关注

    关注

    71

    文章

    2154

    浏览量

    120827
  • 数据转换器
    +关注

    关注

    1

    文章

    354

    浏览量

    27953

原文标题:开发者分享|第三代Zynq RFSoC器件射频数据转换器应用: 时钟设计

文章出处:【微信号:HXSLH1010101010,微信公众号:FPGA技术江湖】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    适用于板载Zynq UltraScale+ZCU102评估板的vivado版本

    我们最近买了(登上Zynq UltraScale + ZCU102评估板(xczu9eg-ffvb1156-2-i))。我们需要知道合适的vivado版本。它有什么特殊的工具吗?我们反
    发表于 12-26 11:34

    如何调试Zynq UltraScale+ MPSoC VCU DDR控制器

    Xilinx DDR 控制器。  DDR PHY 与电路板调试:  Zynq UltraScale+ MPSoC VCU DDR 控制器采用 MIG PHY。  这意味着您可以使用标准 MIG 示例设计来验证您
    发表于 01-07 16:02

    如何使用ZCU102评估板来运行应用

    的教程。这些视频是使用 Vivado® Design Suite 2019.1 版和赛灵思软件开发套件 (SDK) 创建的。其中所含示例均为针对 Zynq® UltraScale+™ MPSoC
    发表于 12-23 06:53

    Zynq UltraScale+ MPSoC ZCU102评估套件解决方案

    Zynq UltraScale+ MPSoC ZCU102 评估套件使用 MAX15301 及 MAX15303 PMBus 稳压器以及 M
    的头像 发表于 07-04 14:19 8747次阅读

    Xilinx基于ARM的Zynq-7000和Zynq UltraScale+ MPSoC及RFSoC器件是否存在安全漏洞

    本文试图搞清楚在 Xilinx 基于 ARM 的 Zynq-7000、Zynq UltraScale+ MPSoC 和 Zynq
    发表于 06-28 15:53 2658次阅读

    赛灵思推出同类首创的Zynq UltraScale+RFSoC ZCU111评估套件

    赛灵思推出了新款 Zynq UltraScale+ RFSoC ZCU111 评估套件,用于支持
    的头像 发表于 08-26 11:08 8618次阅读

    Zynq UltraScale+ RFSoC的功能特点与应用

    在本演示视频中,Xilinx讨论了其Zynq®UltraScale+RFSoC系列的产品详细信息。
    的头像 发表于 11-21 06:07 6256次阅读

    Zynq UltraScale+ MPSoC的发售消息

    Zynq®UltraScale+™MPSoC,现已开始发售。视频向您重点介绍Xilinx UltraScale +产品组合的第一位成员
    的头像 发表于 11-27 06:47 3553次阅读

    Zynq UltraScale+ MPSoC的ZCU102开发套件的开发流程

    使用Zynq UltraScale + MPSoC的ZCU102开发套件,该视频展示了使用SDSoC开发环境的开发流程。
    的头像 发表于 11-27 06:29 4801次阅读

    上新:Zynq UltraScale+ RFSoC ZCU111 评估套件

    上新:Zynq UltraScale+ RFSoC ZCU111 评估套件
    的头像 发表于 07-02 12:04 4084次阅读

    赛灵思与三星联手全球 5G 商用部署

    ZCU216 套件搭载了 Zynq UltraScale+ RFSoC ZCU49DR 器件,提
    发表于 07-08 15:11 1005次阅读

    Zynq UltraScale+ RFSoC器件介绍

    介绍一下Xilinx公司的新一代Zynq UltraScale+ RFSoC器件,可用于LTE、5G、SDR、卫星通信等无线平台。
    的头像 发表于 05-22 10:38 5778次阅读
    <b class='flag-5'>Zynq</b> <b class='flag-5'>UltraScale+</b> <b class='flag-5'>RFSoC</b>器件<b class='flag-5'>介绍</b>

    适用于Xilinx Zynq UltraScale+ MPSoC应用的电源参考设计

    电子发烧友网站提供《适用于Xilinx Zynq UltraScale+ MPSoC应用的电源参考设计.pdf》资料免费下载
    发表于 09-13 09:55 7次下载
    适用于<b class='flag-5'>Xilinx</b> <b class='flag-5'>Zynq</b> <b class='flag-5'>UltraScale+</b> MPSoC应用的电源参考设计

    Zynq UltraScale+射频ZCU216射频数据转换器评估工具

    电子发烧友网站提供《Zynq UltraScale+射频ZCU216射频数据转换器评估工具.pdf》资料免费下载
    发表于 09-15 10:49 4次下载
    <b class='flag-5'>Zynq</b> <b class='flag-5'>UltraScale+</b>射频<b class='flag-5'>ZCU216</b>射频数据转换器<b class='flag-5'>评估</b>工具

    ZCU216评估板用户指南

    电子发烧友网站提供《ZCU216评估板用户指南.pdf》资料免费下载
    发表于 09-15 10:54 8次下载
    <b class='flag-5'>ZCU216</b><b class='flag-5'>评估</b>板用户指南