0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

ITO薄膜的蚀刻速率研究

华林科纳半导体设备制造 来源:华林科纳半导体设备制造 作者:华林科纳半导体设 2022-07-04 15:59 次阅读

在本研究中,我们华林科纳研究了在液晶显示(LCD)技术中常用的蚀刻剂中相同的ITO薄膜的蚀刻速率,保持浴液温度恒定,并比较了含有相同浓度的酸的溶液,对ITO在最有趣的解决方案中的行为进行了更详细的研究,试图阐明这些浴液中的溶解机制。

ITO通过每分钟5.5标准立方厘米的氧流量的直流磁控溅射均匀沉积在玻璃基底上,目标的密度为70%,衬底温度为350°C,沉积电压和功率设置分别为375V和1.7kW,得到的ITO层厚度为120纳米,在550纳米处超过85%的透射率,ITO膜的化学组成通过以下方式获得俄歇电子能谱,都在表面和整体。

蚀刻实验是用部分被光刻胶覆盖的ITO样品进行的,样品垂直放置在蚀刻剂中,蚀刻后,样品在去离子水中冲洗,抗蚀剂在丙酮中剥离,样品在氮气流中干燥,测量蚀刻深度,对于每个蚀刻率测定,这至少5次不同的蚀刻时间,蚀刻深度作为时间的函数绘制,蚀刻率以直线的斜率得到,实验在30或50°C条件下进行,温度保持在0.1°C范围内,电化学测量是在室温下进行的标准电化学电池中包含ITO样品,一个大面积铂对流电极和一个饱和热量参比电极(SCE),使用温金恒电位器LB75L,结合高温度仪器小波发生器PPRI和飞利浦X-Y记录器PM8143,在100mV/s的扫描速率下记录伏安图。

在室温下在电化学电池中进行电位蚀刻实验,在这些实验中,仅测量了一次蚀刻时间后的深度作为应用电位的函数,所有溶液均用去离子水和试剂级化学品制备,为了研究酸的种类是否对ITO的蚀刻动力学有影响,我们在50°C下用不同的蚀刻剂进行了实验。

所有检测的溶液都显示了ITO的一定的攻击,醋酸(乙酸)、磷酸、草酸(草酸)和硫酸的检出率极低(<<为1纳米/分钟),虽然硝酸的比率要高得多,但在设备技术的实际应用中仍然太低。大多数氧化物的溶解明显受到H-+离子浓度的影响。

氧化剂对酸中氧化物蚀刻速率的影响,添加的氧化还原偶联的氧化电位值对溶解动力学有明显的影响,添加的氧化还原偶联的氧化电位值对溶解动力学有明显的影响,对这种效应的解释并不简单,因为参数如pH、金属离子的络合、氧化物中的缺氧和电位同时工作。由于在这种情况下,ITO是缺氧的,因此蚀刻率增加的最合理的原因是金属离子被氧化成更高的价,这就意味着,这种氧化作用随后就会被氧化剂的还原作用所抵消,然后在溶液中加入氧化剂就会导致静止电位的阳极位移。

对ITO在6MHCI和6MHCI+0.2MFeCI3中蚀刻过程中的剩余电位进行了测量,得到的值似乎表明,动力学的增强是由更多的阳极电位引起的,而ITO的电化学氧化应该是可能的,除了双层电荷外,没有其他电流。当TM将扫描范围扩展到更多的阴极电位时,得到了如图1所示的曲线。

pYYBAGLCnf-ANhxIAAAXX2ZGt2g474.jpg

这是由于ITO表面的还原,在随后的阳极扫描中得到了一个氧化峰,被还原的物种在这次扫描中被重新氧化,只有当电极的阴极电极值大于-0.5V(SCE)时,才能观察到氧化电流。这甚至也适用于浓缩的HC1溶液,这些实验表明,ITO是电化学惰性的。

通过静电位蚀刻实验,研究了应用电位是否会影响化学蚀刻速率,这些实验的结果如图2所示。在电位低于-0.50V(SCE)时,蚀刻率增加,结果显示出很大的散点,这是由于还原过程导致表面出现颗粒,用谷物上或旁边的Alpha步长测量,结果产生很大的差异,在碱性溶液中也可以观察到同样的效果,虽然添加氧化剂可以增加蚀刻速率,但伏安图和静电位蚀刻实验都表明,这不是由于观察到的静止电位的阳极位移,这显然不是一种电化学效应,这种效应的真正来源尚不清楚,是进一步研究的重点。

poYBAGLCnf-AJ5t3AAAWumfTvPc948.jpg

另外在浓度对蚀刻速率的影响的实验中, HC1和氢溴酸之间没有发现差异,在低浓度(<2M)时,蚀刻速率可以忽略不计。在约2M时,速率可以测量,并随着浓度的增加而急剧增加,这种行为类似于未解离的酸在水溶液中的活性。在低浓度时,水中的解离是完全的,但在较高浓度时,未解离酸的数量增加。解离受到溶剂介电常数e的强烈影响。虽然用e较低的溶剂稀释HC1浓缩(12M)水溶液仍含有一定量的水,但解离率明显低于水稀释后。

ITO在卤素酸中的行为与InP非常相似,因此似乎合理的假设是认为同样的机制是有效的。In-O键的断裂将比完全离子固体的溶解更困难,在20-50~之间的动力学实验得到了活化能为-70kJ/mol。这个高值可以用所提出的键断裂序列来解释,反应方案也表明,蚀刻不应受到溶液中的质量输运的影响,我们用旋转的ITO样品进行了实验,确实发现对溶解速率没有任何影响。

由In2OJSnO2靶直流磁控溅射制备的玻璃ITO薄膜,卤素和其他酸的蚀刻动力学存在较大差异,卤素酸的蚀刻速率在一个技术上有趣的范围内,而其他酸的蚀刻速率极低,溶解反应与未解离的卤素酸分子一起进行,这一过程在本质上是纯化学的,不受阳极势的影响,观察到的结果可以用In-O键和H-X键同时断裂以及In-X键和H-O键同时形成的模型来解释,在HC1溶液中加入Is显著提高了ITO的蚀刻率,结果表明,这是一种非电化学效应。

审核编辑:汤梓红
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 薄膜
    +关注

    关注

    0

    文章

    292

    浏览量

    29166
  • 蚀刻
    +关注

    关注

    9

    文章

    413

    浏览量

    15368
  • ITO
    ITO
    +关注

    关注

    0

    文章

    55

    浏览量

    19548
收藏 人收藏

    评论

    相关推荐

    ITO薄膜的基本性能是什么?

    ITO是一种宽能带薄膜材料,其带隙为3.5-4.3ev。紫外光区产生禁带的励起吸收阈值为3.75ev,相当于330nm的波长,因此紫外光区ITO薄膜的光穿透率极低。
    发表于 09-11 11:29

    ITO PET技术,ITO PET技术原理是什么

    ITO PET技术,ITO PET技术原理是什么     ITO为氧化铟与氧化锡的混合物,其具有低阻抗、高透明度及易蚀刻的特性,最著名的应
    发表于 03-24 10:36 2341次阅读

    ITO薄膜材料的基本性质及其制备方法的介绍

    概述了透明导电薄膜的分类以及ITO薄膜的基本特性,综述了ITO薄膜主要的制备技术及其研究的进展,
    发表于 11-03 10:13 24次下载

    蚀刻法对金属陶瓷薄膜进行电阻修整

    二极管射频制备钽硅金属陶瓷薄膜的电学性能。研究了溅射和射频。用氩气对这些薄膜进行溅射蚀刻。 可以看出,当从钽面积比超过50%的靶溅射时,钽-二氧化硅金属陶瓷
    发表于 02-25 12:12 546次阅读
    用<b class='flag-5'>蚀刻</b>法对金属陶瓷<b class='flag-5'>薄膜</b>进行电阻修整

    硅碱性蚀刻中的绝对蚀刻速率

    在 KOH 水溶液中进行湿法化学蚀刻期间,硅 (1 1 1) 的绝对蚀刻速率已通过光学干涉测量法使用掩膜样品进行了研究蚀刻
    发表于 03-04 15:07 1185次阅读
    硅碱性<b class='flag-5'>蚀刻</b>中的绝对<b class='flag-5'>蚀刻</b><b class='flag-5'>速率</b>

    多晶ZnO:Al薄膜蚀刻特性研究

    密度通常随着温度的升高、浓度的降低或通过在小分子大小的弱酸中蚀刻而增加。观察到的多晶ZnO:Al膜的腐蚀趋势在ZnO单晶上得到证实。我们从蚀刻速率和凹坑形成的角度详细讨论了蚀刻过程。根
    的头像 发表于 05-23 16:51 3467次阅读
    多晶ZnO:Al<b class='flag-5'>薄膜</b>的<b class='flag-5'>蚀刻</b>特性<b class='flag-5'>研究</b>

    蚀刻速率的影响因素及解决方法

    通常在蚀刻过程之后通过将总厚度变化除以蚀刻时间或者通过对不同的蚀刻时间进行几次厚度测量并使用斜率的“最佳拟合”来测量,当怀疑蚀刻速率可能不随
    发表于 05-27 15:12 4761次阅读

    ITO薄膜湿法刻蚀研究

    本文描述了我们华林科纳一种新的和简单的方法,通过监测腐蚀过程中薄膜的电阻来研究湿法腐蚀ITO薄膜的动力学,该方法能够研究0.1至150纳米/
    的头像 发表于 07-01 14:39 2941次阅读
    <b class='flag-5'>ITO</b><b class='flag-5'>薄膜</b>湿法刻蚀<b class='flag-5'>研究</b>

    溶剂对ITO电极蚀刻的影响

    本文研究了室温下盐酸和王水溶剂对ITO膜腐蚀行为的影响,在王水中比在盐酸中获得更高的蚀刻速率,然而,通过XPS分析,发现在王水蚀刻剂中比在H
    的头像 发表于 07-01 16:50 1738次阅读
    溶剂对<b class='flag-5'>ITO</b>电极<b class='flag-5'>蚀刻</b>的影响

    锗、硅、SiNx薄膜的各向同性等离子体蚀刻

    CMOS和MEMS制造技术,允许相对于其他薄膜选择性地去除薄膜,在器件集成中一直具有很高的实用性。这种化学性质非常有用,但是当存在其他材料并且也已知在HF中蚀刻时,这就成了问题。由于器件的静摩擦、缓慢的
    的头像 发表于 06-26 13:32 1563次阅读
    锗、硅、SiNx<b class='flag-5'>薄膜</b>的各向同性等离子体<b class='flag-5'>蚀刻</b>

    异质结电池的ITO薄膜沉积

    由于异质结电池不同于传统的热扩散型晶体硅太阳能电池,因此在完成对其发射极以及BSF的注入后,下一个步骤就是在异质结电池的正反面沉积ITO薄膜ITO薄膜能够弥补异质结电池在注入发射极后
    的头像 发表于 09-21 08:36 841次阅读
    异质结电池的<b class='flag-5'>ITO</b><b class='flag-5'>薄膜</b>沉积

    异质结太阳能电池结构 —— ITO薄膜

    在异质结太阳能电池的结构中,ITO薄膜对其性能的影响是非常重要且直接的,ITO薄膜自身的优劣与制备ITO
    的头像 发表于 10-16 18:28 1524次阅读
    异质结太阳能电池结构 —— <b class='flag-5'>ITO</b><b class='flag-5'>薄膜</b>

    带您深入了解ITO薄膜的方阻与影响方阻的因素

    在太阳能电池的沉积工艺中,制备高性能的ITO薄膜是其首要任务。电池厂商在制备ITO薄膜时,往往需要考虑自身的方阻与影响ITO
    的头像 发表于 12-28 08:33 2066次阅读
    带您深入了解<b class='flag-5'>ITO</b><b class='flag-5'>薄膜</b>的方阻与影响方阻的因素

    ITO薄膜光学性能受退火工艺温度的影响

    ITO薄膜即铟锡氧化物半导体透明导电膜,主要优点是其高透明度和导电性,可以作为透明电极应用在光伏电池中。在TOPCon电池中,添加ITO薄膜可以有效提升电池的短路电流密度和转换效率,是
    的头像 发表于 01-20 08:32 1103次阅读
    <b class='flag-5'>ITO</b><b class='flag-5'>薄膜</b>光学性能受退火工艺温度的影响

    沉积温度和溅射功率对ITO薄膜性能的影响研究

    ITO薄膜在提高异质结太阳能电池效率方面发挥着至关重要的作用,同时优化ITO薄膜的电学性能和光学性能使太阳能电池的效率达到最大。沉积温度和溅射功率也是
    的头像 发表于 03-05 08:33 972次阅读
    沉积温度和溅射功率对<b class='flag-5'>ITO</b><b class='flag-5'>薄膜</b>性能的影响<b class='flag-5'>研究</b>