0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

软包锂电池内部的力学和化学变化

锂电联盟会长 来源:锂电联盟会长 作者:锂电联盟会长 2022-07-05 15:11 次阅读

原位表征技术可以从空间动态角度分析软包锂电池内部的力学和化学变化。由于商业化软包锂电池结构封闭,快速充电过程中的失效机理比较复杂,这给软包电池的表征带来很大难度。同步X光成像是一种常用的原位无损检测软包锂电池内部力学、电化学动态变化的技术,但是该设备昂贵,不能被广泛采用。此外,普通的声波探测技术只能在1D维度对软包电池进行点扫,通过建立声波-时间模型来分析软包电池的失效机理,如析锂、产气等,这些测试都是在电池化成阶段或者失效之后进行的,对实时的物理相变过程(如充放电过程中的石墨负极相变)研究较少。因此,开发一种新型廉价、简单无损的检测技术来实时监控软包锂电池在循环过程中的物理、化学变化具有重要的市场前景。

哥伦比亚大学化工系Daniel Steingart教授、普林斯顿大学机械与航空系Wesley Chang开发了一种基于时间和频率的可以检测软包电池内部动态变化的原位2D声学扫描装备。该设备的技术优势为:1. 可以准确定位电池内部宏观非均匀性(如锂金属析出)发生的时间和地点。2. 可以在任意充放电倍率下对任意尺寸大小的软包电池进行检测。3. 可以通过建立微分振幅成像模型分析电极相变行为的空间动力学。该文章发表在国际顶级期刊ACS Energy Letters上,由梅赛德斯奔驰北美研发中心资助完成。

图1a中,电池在C/2充放电过程中,声波振幅在充电过程中上升,然后在放电过程中降低。对应了图1b中的ToF曲线在充电过程中频率降低,放电过程中频率上升。将时间-振幅曲线求导,可以得到图1c中的微分振幅曲线,对应于电极材料在充放电过程中的相变。图1d中的频率振幅分析了傅里叶转变之后的峰值频率的转移。

43e6813e-e47a-11ec-ba43-dac502259ad0.png

图一 四种声学扫描的模型:(a) 时间-振幅模型描述了C/2充放电倍率下,电池包某个位置的振幅随时间的变化。(b) ToF表征声波穿过电池的时间,与电池的厚度和模组变化有关。(c) 微分振幅用来描述电极的相变,该曲线是对图a进行求导得到的。(d) 对频率-振幅曲线进行快速傅里叶变换,并在峰值频率处成像。

图二显示 400 mAh的LiCoO2/石墨软包电池在C/5恒电流下进行充放电,以0.5mm的声波速率对电池进行扫描,扫描面积大约为3 X 2 cm2。所得到的振幅强度扫描结果显示,振幅在充电过程中增大,在放电过程中减小。这是由于石墨电极锂化之后会发生~10%的体积膨胀,同时电池的模量也会增加三倍,因此声波的传输距离会加长,导致声波的振幅增大~150%。

442b4a6c-e47a-11ec-ba43-dac502259ad0.png

图二 原位声波振幅扫描:(a) 400 mAh的LiCoO2/石墨软包电池在C/5恒电流循环下的振幅强度扫描结果。

为了展示快充过程中电池内部的变化,对2C倍率下循环的电池进行声波扫描,截止电压分别为4.2,4.35,4.5 V。该扫描装备可以以0.5mm的扫速对6cm2的软包电池进行声波扫描,每次扫描大约1.5分钟,30分钟的整个充电过程可以扫描获得20幅声波的振幅图像。图3a中,当充电截止电压为4.2V时,前四个循环的声波振幅强度分布较为均匀,说明电池内部没发生明显的变化。第五次充电状态下出现了不均匀分布的声波振幅,说明电池内部出现了轻微的析锂。图3b中,当充电截止电压为4.35V时,声波的振幅衰减幅度更为显著,尤其是在电池的极耳部位,锂沉积更加严重。第二圈充电状态下静置时发生了严重的振幅强度衰减,说明了析出的锂与电解液反应导致电池内部产气。软包电池极耳的放置,隔膜孔洞的闭合,电极的边缘效应等导致电流分布不均的因素都会导致不同程度的析锂。当充电截止电位达到4.5V (图3c) 或4.8V (图3d)时,电极发生更加严重的永久性析锂,放电结束之后析锂依旧存在。在40 ℃温度下,4C倍率下循环的电池在充电一开始就出现了声波振幅的衰减,静置过程中又出现了振幅强度的上升。这说明在40 ℃时,4C大倍率充电0.1小时并没有发生胀气或析锂引起的永久性的声波振幅衰减。

446d105a-e47a-11ec-ba43-dac502259ad0.png

图三 不同充放电倍率下的声波扫描:(a) 2C充电截止电位为4.2V, (b) 4.35 V, (C) 4.5 V, 放电倍率均为C/2,放电截止电位为2.7 V。(d) 4C充电到4.8V,并保持20分钟。

此工作中的快速2D扫描技术可以观察软包电池宏观平面上的声波振幅强度信号分布,即使在快充模式下,依然能检测出电池特定部位的析锂或产气变化。图三检测了容量为400 mAh的LCO/石墨软包电池的振幅强度变化,在首圈1C恒流充电到4.5V时,振幅强度增加了1.5倍,并在随后的C/2放电过程中慢慢降低。极耳附近的振幅强度发生的明显衰减,这是由极耳附近的应力和电压梯度不均匀导致的锂析出引起的。循环40小时之后,软包电池的大部分区域发生了信号衰减,这是由于长时间循环之后电池内部的产气量逐渐增加。

44c43542-e47a-11ec-ba43-dac502259ad0.png

图四 微分振幅图像描述电极的空间相变:容量为400 mAh的LCO/石墨软包电池在1C恒流充电到4.5V,20分钟静置,然后C/2放电的(a)首圈和(b)第十圈的声波振幅强度图像 (C) 首圈的微分振幅曲线与成像分析(红色为正值,蓝色为负值)(d) 第十圈相对于第一圈出现了较大的变化。

声波扫描技术可以进一步理解软包电池的电化学-力学耦合行为。dV/dQ曲线的峰值对应于电池循环过程中电极材料的相变过程,微分振幅分析将相变过程变得空间可视化。通过对微分电压和微分振幅信号进行校正,可以对电化学-力学耦合行为进行经验测量。快速充电条件下一系列的相变反应同时发生,导致特征峰变宽,锂化过程发生在石墨电极的表面而非内部。从C/5增大到1C时,图5a的微分电压和图5c的微分振幅曲线显示有三至四个主要的峰位,对应于石墨电极的相变。在高于2C的倍率时,由于相变过程重叠和锂化过程的减弱,特征峰变宽,强度变低。而且出现的额外特征峰,对应于锂的沉积。2D微分分析可以描述软包电池在快充过程中的空间变化,随着充放电倍率增加,微分曲线的峰变宽,强度变低。

4511c5c8-e47a-11ec-ba43-dac502259ad0.png

图五(a)不同充放电倍率下的微分电压(dV/dQ)曲线,(b)电压曲线, (C) 微分振幅曲线(d(Amp)/dQ), (d) 振幅强度曲线。

进一步对无负极锂金属软包电池和大尺寸商用软包电池进行了2D原位声学扫描。无锂负极软包电池由于电解液的消耗,容易导致死锂或产气,这些界面粗糙度的变化是一种声波的散射体,原位2D声学扫描技术可以以此来表征电池特定部位在循环过程中的电解液消耗速率。采用库伦效率较低的电解液体系(1M LiPF6 EC:EMC + 2% VC)进行表征,在第二圈充电时声波振幅强度发生了明显减弱,而且频率比时间在振幅强度的分析上更加敏感,对电池润湿效果的辨别也更清晰。电池拆解后,发现了大量生成的锂枝晶,使得声波振幅强度减弱,并且频率也出现降低。

454b87d6-e47a-11ec-ba43-dac502259ad0.png

图六(a)随着锂沉积的增加,声波振幅强度逐渐减小(b)频率扫描分析说明了电池可能存在的不均匀润湿性。

【结论】

该原位声波检测装置可以检测大尺寸商业软包电池,具有以下几点优势:

1. 大尺寸的软包电池(6 cm2)可以在2分钟内扫描完毕,并且在高倍率充电状态下依然保持较高的精确度。

2. 微分振幅将声学信号和电极相变联系起来,比之前的相关研究进了一大步。

3. 频率和时间扫描分析在揭示电池变化中起到相互补充的作用。

4. 原位声学扫描可以对不同尺寸的锂离子电池或者无负极锂金属电池进行扫描分析。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂电池
    +关注

    关注

    259

    文章

    7988

    浏览量

    169057
  • TOF
    TOF
    +关注

    关注

    9

    文章

    475

    浏览量

    36221

原文标题:软包电池内部空间动态表征!

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    锂电池进水会爆炸吗?

    锂电池进水确实可能引发严重的安全问题,因为水作为一种导电物质,一旦渗入电池内部,可能引发电池内部的短路,进一步导致电池膨胀、漏液甚至起火爆炸。为了应对这一挑战,许多
    的头像 发表于 06-06 14:28 2338次阅读

    锂电池边电压指的是什么?

    锂电池的边电压通常指的是电池在充放电过程中,单个电池单元的电压。在锂离子电池组中,边电压是衡
    的头像 发表于 05-07 11:15 3531次阅读

    三元锂电池能和硬三元锂电池能混合用吗

    电池使用和系统中,将三元锂电池与硬三元锂电池混合使用是一个复杂的问题,涉及到
    的头像 发表于 05-07 10:48 854次阅读

    如何区分“锂电池”和“聚合物电池”呢?

    锂电池”和“聚合物电池”这两个术语在电池行业中经常被提及,它们指的是两种不同类型的锂离子电池
    的头像 发表于 05-07 10:37 1913次阅读

    锂电池的优缺点是什么

    锂电池,也称为聚合物锂电池,是一种使用铝塑复合膜作为外壳材料的电池
    的头像 发表于 04-29 17:55 2664次阅读

    锂电池内阻变大的原因及影响

    锂电池内阻的变化电池老化和性能衰减的重要指标之一。内阻的增大会直接影响电池的工作状态和使用寿命,因此了解锂电池内阻变大的原因及其影响对于
    的头像 发表于 04-29 17:11 5755次阅读

    锂电池和硬哪个好

    锂电池作为现代电子设备和电动汽车的主要电源,其封装形式主要分为和硬两种。
    的头像 发表于 04-28 17:22 5856次阅读

    电池是什么?电池具有哪些特点和优势?

    锂电池按封装形式可分为圆柱、方形、三种方式。圆柱和方形电池分别采用钢壳和铝壳进行封装
    的头像 发表于 02-22 17:39 1920次阅读

    电池锂电池的区别

    单元组成,每个单元都由正极、负极、电解质和隔膜等组成。当电池连接到外部电路时,化学反应会在电池内部发生,产生电流,从而提供电能。 锂电池是一种特殊类型的
    的头像 发表于 01-19 11:22 2780次阅读

    锂电池为什么会有内阻

    锂电池内阻是指锂离子电池内部受到的电流阻力,它由欧姆电阻和极化电阻构成。具体来说,电池内阻包括欧姆内阻、界面阻抗、电荷转移阻抗和扩散阻抗等。这些阻抗因素共同决定了电池的电性能。
    的头像 发表于 01-15 16:23 1015次阅读

    锂电池单体、锂电池组和锂电池的区别

    的概念:锂电池单体、锂电池组和锂电池。本文将详细介绍锂电池单体、锂电池组和
    的头像 发表于 01-11 14:09 3018次阅读

    什么是锂电池的内阻?锂电池内阻过大或过小对电池有什么影响?

    什么是锂电池的内阻?锂电池内阻过大或过小对电池有什么影响? 锂电池的内阻是指电池内部材料、电解液、电解质等因素引起的
    的头像 发表于 01-10 15:47 6640次阅读

    锂电池防爆要求 锂电池的防爆原理

    电解液泄露、极端温升等问题,进而引发爆炸。 锂电池防爆的要求分为设计要求和使用要求两个方面。设计要求主要涉及电池内部和外部的结构设计和材料选择,以及相应的加工工艺,而使用要求则是指在电池的日常使用过程中需要注意
    的头像 发表于 01-10 11:23 1925次阅读

    一种锂电池内水去除工艺方法

    一种锂电池内水去除工艺方法
    的头像 发表于 01-04 10:23 439次阅读
    一种<b class='flag-5'>锂电池内</b>水去除工艺方法

    扩展模块驱动分布式I/O在新能源锂电池自动化生产中的发展

    新能源行业的快速发展,新能源锂电池生产面临着越来越多的挑战和机遇。为了满足市场对高品质、高性能锂电池的需求,企业需要不断改进生产技术、提高生产效率和品质。
    发表于 12-28 11:20