0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

计算机视觉技术面临的挑战

Carol Li 来源:电子发烧友网 作者:李弯弯 2022-07-07 07:55 次阅读
电子发烧友网报道(文/李弯弯)计算机视觉技术最早开始于20世纪60年代,其主要是模仿人类视觉,让计算机或机器人看到物体,到如今计算机视觉已经取得很大进展,不过就研究和开发来说,它还有很大的探索空间。

当今的计算机视觉的子领域大概可以包括:场景重建、目标检测、事件检测、视频跟踪、目标识别、3D姿态估计、运动估计、视觉伺服、3D场景建模、图像修复等。

比如目标检测,具有目标检测的设备可以找到目标,在其周围画出矩形边界框,并确定每个被检测目标的类别,目标检测可以应用于许多不同的行业,包括零售、体育、医疗保健、营销、室内设计、农业、建筑、公共安全、交通等。

目标检测是一个复杂的过程,其实现需要经历一定的挑战,比如视角的多样性、变形、遮挡、光照条件、杂乱或有纹理的背景、多样性、速度等。具体来看,比如视角的多样性,物体检测的最大困难之一是从不同的角度看一个物体,可能看起来完全不同;

再比如照明对物体的定义有很大的影响,相同的物体会因光照条件的不同而看起来不同,可能照亮的空间越少,物体就越不可见,这些都会影响检测器定义目标的能力;在视频方面,探测器需要经过训练,在不断变化的环境中进行分析,这意味着目标检测算法不仅必须准确地分类重要的目标,而且还必须在预测过程中具有好的速度,能够识别运动中的目标。

从某种意义说,这几年计算机视觉已经进入瓶颈期。以图像分类、目标检测、图像分割为代表的一些基础技术经过过去几年的发展,精确度已经达到产业落地水平,但剩下的一些问题比较难攻克,如非常细粒度的分类,非常小和模糊的目标检测和分割,以及如何保证在复杂光照变化下的分割结果的稳定性等。

可以说过去几年,计算机视觉技术一直在试图攻克一些老的难题,如跨年龄、大姿态、有遮挡的人脸识别,有一定的进展,却不能算是有很大的突破。

在落地应用方面,计算机视觉存在很大的同质化问题,很多公司扎堆在几个热门场景中,比如安防场景,智能安防是计算机视觉最主要的应用场景,而且已经持续很多年,目前来说,计算机视觉较为成熟的应用场景也是安防领域。

大家熟知的AI初创企业商汤、旷视、依图、云从等都在这个领域有重要布局,另外安防企业和互联网企业也在这个领域投入很大力度,包括海康威视、大华、宇视、百度等,此外还包括几百家中小计算机视觉企业。

不过除了安防,各企业也有在其他领域进行探索,并逐渐有所进展,比如金融、手机、汽车、工业、医疗、零售等领域,比如虹软科技,在手机领域、笔记本电脑、智能可穿戴设备等移动终端,以及智能驾驶领域都有布局,再比如格灵深瞳除了城市管理之外,在智慧金融、商业零售等方面都已经取得一定成绩。

整体而言,从上世纪60年代到现在计算机视觉技术已经取得很大的进展,不过其在实现上还存在一些难题,发展也遇到了一些瓶颈,而且在落地应用上大多数企业扎堆在少数场景中,不过从近年来的情况来看,计算机视觉企业在技术和应用上还在持续寻找突破,目前除了在安防领域应用比较成熟以外,在金融、医疗、工业、智能驾驶等领域进展明显。




声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    211

    文章

    28379

    浏览量

    206914
  • 计算机
    +关注

    关注

    19

    文章

    7488

    浏览量

    87849
  • AI
    AI
    +关注

    关注

    87

    文章

    30728

    浏览量

    268886
收藏 人收藏

    评论

    相关推荐

    计算机视觉有哪些优缺点

    计算机视觉作为人工智能领域的一个重要分支,旨在使计算机能够像人类一样理解和解释图像和视频中的信息。这一技术的发展不仅推动了多个行业的变革,也带来了诸多优势,但同时也伴随着一些
    的头像 发表于 08-14 09:49 920次阅读

    计算机视觉技术的AI算法模型

    计算机视觉技术作为人工智能领域的一个重要分支,旨在使计算机能够像人类一样理解和解释图像及视频中的信息。为了实现这一目标,计算机
    的头像 发表于 07-24 12:46 804次阅读

    机器视觉计算机视觉有什么区别

    机器视觉计算机视觉是两个密切相关但又有所区别的概念。 一、定义 机器视觉 机器视觉,又称为计算机
    的头像 发表于 07-16 10:23 520次阅读

    计算机视觉的五大技术

    计算机视觉作为深度学习领域最热门的研究方向之一,其技术涵盖了多个方面,为人工智能的发展开拓了广阔的道路。以下是对计算机视觉五大
    的头像 发表于 07-10 18:26 1330次阅读

    计算机视觉的工作原理和应用

    图像和视频中提取有用信息,进而进行决策和行动。自1960年代第一批学术论文问世以来,计算机视觉技术已经取得了长足的发展,并在多个领域展现出巨大的应用潜力和价值。
    的头像 发表于 07-10 18:24 1908次阅读

    计算机视觉与人工智能的关系是什么

    、交流等方面。计算机视觉与人工智能之间存在着密切的联系,计算机视觉是人工智能的一个重要分支,也是实现人工智能的关键技术之一。
    的头像 发表于 07-09 09:25 619次阅读

    计算机视觉与智能感知是干嘛的

    感知(Intelligent Perception)则是计算机视觉的一个分支,它强调计算机在处理视觉信息时的智能性和自适应性。 随着计算机技术
    的头像 发表于 07-09 09:23 915次阅读

    计算机视觉和机器视觉区别在哪

    ,旨在实现对图像和视频的自动分析和理解。 机器视觉 机器视觉计算机视觉的一个分支,主要应用于工业自动化领域。它利用计算机和图像处理
    的头像 发表于 07-09 09:22 446次阅读

    计算机视觉和图像处理的区别和联系

    计算机视觉和图像处理是两个密切相关但又有明显区别的领域。 1. 基本概念 1.1 计算机视觉 计算机视觉
    的头像 发表于 07-09 09:16 1281次阅读

    计算机视觉属于人工智能吗

    属于,计算机视觉是人工智能领域的一个重要分支。 引言 计算机视觉是一门研究如何使计算机具有视觉
    的头像 发表于 07-09 09:11 1289次阅读

    深度学习在计算机视觉领域的应用

    随着人工智能技术的飞速发展,深度学习作为其中的核心技术之一,已经在计算机视觉领域取得了显著的成果。计算机
    的头像 发表于 07-01 11:38 777次阅读

    机器视觉计算机视觉的区别

    在人工智能和自动化技术的快速发展中,机器视觉(Machine Vision, MV)和计算机视觉(Computer Vision, CV)作为两个重要的分支领域,都扮演着至关重要的角色
    的头像 发表于 06-06 17:24 1319次阅读

    计算机视觉的主要研究方向

    计算机视觉(Computer Vision, CV)作为人工智能领域的一个重要分支,致力于使计算机能够像人眼一样理解和解释图像和视频中的信息。随着深度学习、大数据等技术的快速发展,
    的头像 发表于 06-06 17:17 948次阅读

    【量子计算机重构未来 | 阅读体验】 跟我一起漫步量子计算

    的发展,我们的通信和数据安全将得到更强大的保障。然而,需要指出的是,量子计算技术的发展仍面临诸多挑战。例如,量子计算机的构建和维护成本极高,目前仍停留在实验室阶段;同时,量子
    发表于 03-13 19:28

    计算机视觉的十大算法

    视觉技术的发展起到了重要的推动作用。一、图像分割算法图像分割算法是计算机视觉领域的基础算法之一,它的主要任务是将图像分割成不同的区域或对象。常见的图像分割算法包括基
    的头像 发表于 02-19 13:26 1236次阅读
    <b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>的十大算法