0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

可监视电压的1节可充电锂电池保护电路

芯情观察猿 来源:芯情观察猿 作者:芯情观察猿 2022-07-11 09:52 次阅读

本电路采用S-82R1A保护IC,用于对1节锂离子/锂聚合物可充电电池组的过充电、过放电和过电流的保护。


电路原理


本电路通过把NTC热敏电阻器连接于S-82R1A的热敏电阻器连接端子(TH端子),可以进行过热保护。通过使用电池电压监视端子(BS端子),还能监视电池电压,实现了以下性能:
- 过热检测温度+45°C ~ +85°C(1°C进阶):精度±3°C
- 过充电检测电压 3.500 V ~ 4.800 V(5 mV进阶):精度±15 mV
- 过充电解除电压 3.100 V ~ 4.800 V:精度±50 mV
- 过放电检测电压 2.000 V ~ 3.000 V(10 mV进阶):精度±50 mV
- 过放电解除电压 2.000 V ~ 3.400 V:精度±75 mV
- 放电过电流1检测电压 3 mV ~ 100 mV(0.5 mV进阶):精度±1.5 mV
- 放电过电流2检测电压 10 mV ~ 100 mV(0.5 mV进阶):精度±3 mV
- 负载短路检测电压 20 mV ~ 100 mV(1 mV进阶):精度±5 mV
- 充电过电流检测电压 -100 mV ~ -3 mV(0.5 mV进阶):精度±1.5 mV
- 各种检测延迟时间仅通过内置电路即可实现(不需要外接电容)
- 放电过电流状态解除电压 : 放电过电流解除电压(VRIOV) = VDD × 0.8(典型值)
- 休眠功能 : 有
- 高耐压:VM端子、CO端子的绝对最大额定值28 V
工作时消耗电流:4.5μA(典型值)、6.0μA(最大值)(Ta = +25°C)
- 休眠时消耗电流: 50 nA(最大值)(Ta = +25°C)
- 过放电时消耗电流: 0.5μA(最大值)(Ta = +25°C)

pYYBAGLLgNiALEr3AACbNPHei_8138.png电池保护IC的连接示例


1、通常状态

通常状态下,S-82R1A通过监视连接在VDD-VSS间的电池电压,VINI-VSS间电压,以及NTC热敏电阻器的温度,来控制充电和放电。

电池电压在过放电检测电压(VDL)以上、过充电检测电压(VCU)以下的范围、VINI端子电压在充电过电流检测电压(VCIOV)以上、放电过电流1检测电压(VDIOV1)以下的范围、NTC热敏电阻器的温度在过热检测温度(TTD)以下时,充电控制用FET和放电控制用FET都为ON。这种状态称为通常状态,可自由的进行充放电。

初次连接电池时,有可能不能放电。这时,如果连接充电器就可变为通常状态了。

2、过充电状态

过充电状态有2种情况:即过充电解除电压和过充电检测电压相异(VCL ≠ VCU)、相同(VCL = VCU)。

(1)VCL ≠ VCU

当通常状态下的电池电压在充电过程中超过VCU,且这种状态保持在过充电检测延迟时间(tCU)以上的情况下,充电控制用FET为OFF,会停止充电。这种状态称为过充电状态。过充电状态的解除,分为如下的2种情况。

如果VM端子电压在低于0.35V(典型值)的情况下,当电池电压降低到过充电解除电压(VCL)以下时,即可解除过充电状态。

如果VM端子电压在0.35V(典型值)以上的情况下,当电池电压降低到VCU以下时,即可解除过充电状态。检测出过充电之后,连接负载开始放电,由于放电电流通过充电控制用FET的内部寄生二极管流动,因此VM端子电压比VSS端子电压增加了内部寄生二极管的Vf电压。此时,如果VM端子电压在0.35V(典型值)以上的情况下,当电池电压在VCU以下时,即可解除过充电状态。

(2)VCL = VCU

当通常状态下的电池电压在充电过程中超过VCU,且这种状态保持在tCU以上的情况下,充电控制用FET为OFF,会停止充电。这种状态称为过充电状态。

当VM端子电压在0.35V(典型值)以上,并且电池电压降低到VCU以下时,即可解除过充电状态。检测出过充电之后,连接负载开始放电,由于放电电流通过充电控制用FET的内部寄生二极管流动,因此VM端子电压比VSS端子电压增加了内部寄生二极管的Vf电压。此时,如果VM端子电压在0.35V(典型值)以上的情况下,当电池电压在VCU以下时,即可解除过充电状态。

对于超过VCU而被充电的电池,即使连接了较大值的负载,也不能使电池电压下降到VCU以下的情况下,在电池电压降低到VCU以下为止,放电过电流检测以及负载短路检测是不能发挥作用的。但是,实际上电池的内部阻抗有数十mΩ,在连接了可使过电流发生的较大值负载的情况下,因为电池电压会马上降低,因此放电过电流检测以及负载短路检测是可以发挥作用的。

检测出过充电之后,在连接充电器的情况下,即使电池电压降低到VCL以下,也不能解除过充电状态。断开与充电器的连接,当放电电流流动,VM端子电压上升到0.35V(典型值)以上时,既可解除过充电状态。

pYYBAGLLgReAbIHJAAQFpDVwix8036.png充电时序图

3、过放电状态

当通常状态下的电池电压在放电过程中降低到VDL以下,且这种状态保持在过放电检测延迟时间(tDL)以上的情况下,放电控制用FET为OFF,会停止放电。这种状态称为过放电状态。

在过放电状态下,由于VDD-VM端子间可通过RVMD来进行短路,因此VM端子会因RVMD而被上拉。在过放电状态下如果连接充电器,当VM端子电压降低到0V(典型值)以下时,电池电压在VDL以上,解除过放电状态。VM端子电压不低于0V(典型值)时,电池电压在过放电解除电压(VDU)以上,解除过放电状态。
在过放电状态下,没有连接RVMS。

在过放电状态下,当VM端子电压上升到0.7V(典型值)以上时,休眠功能则开始工作,消耗电流将减少到休眠时消耗电流(IPDN)。通过连接充电器,使VM端子电压降低到0.7V(典型值)以下,来解除休眠功能。

在过放电状态下,即使VM端子电压上升到0.7V(典型值)以上,休眠功能也不会工作。


4、放电过电流状态

放电过电流状态有4种情况:放电过电流1、放电过电流2、负载短路、负载短路2。

(1)放电过电流1、放电过电流2、负载短路

在通常状态下的电池,由于放电电流达到指定值以上,会导致VINI端子电压上升到VDIOV1以上,且此状态持续保持在放电过电流1检测延迟时间(tDIOV1)以上的情况下,放电控制用FET为OFF,会停止放电。这种状态称为放电过电流状态。

在放电过电流状态下,VM-VSS端子间可通过RVMS来进行短路。但是,在连接着负载的期间,VM端子电压由于连接着负载而变为VDD端子电压。若断开与负载的连接,则VM端子恢复回VSS端子电压。

当VM端子电压降低到VRIOV以下时,即可解除放电过电流状态。在放电过电流状态下,没有连接RVMD。

(2)负载短路2

在通常状态下的电池,连接了能导致放电过电流发生的负载,VM端子电压上升到VSHORT2以上,且此状态持续保持在负载短路检测延迟时间(tSHORT)以上的情况下,放电控制用FET为OFF,会停止放电。这种状态称为放电过电流状态。

5、充电过电流状态

在通常状态下的电池,由于充电电流在指定值以上,会导致VINI端子电压降低到VCIOV以下,且此状态持续保持在充电过电流检测延迟时间(tCIOV)以上的情况下,充电控制用FET为OFF,会停止充电。这种状态称为充电过电流状态。

断开与充电器的连接,当放电电流流动,VM端子电压上升到0.35V(典型值)以上时,既可解除充电过电流状态。在过放电状态下,充电过电流检测不发挥作用。

6、过热保护状态

当连接于TH端子的NTC热敏电阻器的温度超过过热检测温度(TTD),且此状态持续维持在过热检测延迟时间(tTH)以上的情况下,充电控制用FET和放电控制用FET都为OFF,会停止充放电。这种状态称为过热保护状态。

当NTC热敏电阻器的温度低于过热解除温度(TTR)时,解除过热保护状态。在过放电状态下,过热检测不工作。

7、电池电压监视端子(BS端子)

通过BS端子可以监视VSS端子的电位。在通常状态下,BS端子、VSS端子间通过RBSS连接。在通常状态以外时,RBSS被切断。但是,在过放电状态连接充电器时,当VM端子电压降低到0V(典型值)以下,RBSS会被连接。

8、允许向0V电池充电

已被连接的电池电压因自身放电,在为0V时的状态下开始变为可进行充电的功能。在EB+端子与EB?端子之间连接电压在向0V电池充电开始充电器电压(V0CHA)以上的充电器时,充电控制用FET的门极会被固定为VDD端子电压。

借助于充电器电压,当充电控制用FET的门极和源极间电压达到阈值电压以上时,充电控制用FET将被导通(ON)而开始进行充电。此时,放电控制用FET为OFF,充电电流会流经放电控制用FET的内部寄生二极管而流入。在电池电压变为VDL以上时恢复回通常状态。

9、禁止向0V电池充电

连接了内部短路的电池(0V电池)时,禁止充电的功能。电池电压在0V电池充电禁止电池电压(V0INH)以下时,充电控制用FET的门极被固定在EB?端子电压,而禁止进行充电。当电池电压在V0INH以上时,可以进行充电。

有可能存在被完全放电后,不推荐再一次进行充电的锂离子可充电电池。这是由于锂离子可充电电池的特性而决定的,所以当决定允许或禁止向0V电池充电时,请向电池厂商确认详细情况。

10、延迟电路

各种检测延迟时间是将约4kHz的时钟进行计数之后而分频计算出来的。备注 tDIOV1, tDIOV2, tSHORT的计时是从检测出VDIOV1时开始的。因此,从检测出VDIOV1时刻起到超过tDIOV2, tSHORT之后,当检测出VDIOV2, VSHORT时,从检测出时刻起分别在tDIOV2, tSHORT之内立即把放电控制用FET切换为OFF。


芯齐齐BOM分析


本电路通过S-82R1A电池保护IC,使用外接NTC热敏电阻器,实现了高精度过热保护电路,而且外接元器件精简。

其中,S-82R1A电池保护IC内置高精度电压检测电路和延迟电路,自带电池电压监视端子,各种检测延迟时间仅通过内置电路即可实现 (不需要外接电容)。S-82R1A工作温度范围广-40°C~+85°C, 采用HSNT-8(1616)封装,无铅(Sn 100%)、无卤素。

pYYBAGLLgWSAbrCcAAJM-MOrPrA956.png

BOM表中,如果FET的阈值电压在过放电检测电压以上的情况下,有可能导致在过放电检测之前停止放电的情况发生,应该让阈值电压≤过放电检测电压。

电阻器中,由于过充电检测电压精度由R1 = 100Ω保证,连接其他数值的电阻会降低精度。因此,R1应以实测结果为准,定型时选择1% 精度精密电阻器。温度检测精度因NTC热敏电阻器的规格不同而有所偏差,R4选择阻值为470kΩ±1%精度的NTC热敏电阻器。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂电池
    +关注

    关注

    260

    文章

    8145

    浏览量

    170754
  • 电阻器
    +关注

    关注

    21

    文章

    3786

    浏览量

    62201
  • 保护电路
    +关注

    关注

    46

    文章

    893

    浏览量

    101707
收藏 人收藏

    评论

    相关推荐

    锂电池充电电路图如何设计 三锂电池充电管理芯片电路图解析

    ,三锂电池输出电路1.三锂电池保护
    发表于 12-12 12:18 2.4w次阅读

    锂电池保护IC,双锂电池充电IC,完整原理图

    电路(VIN:5V) PL7222ESOP8降压型双锂电池串联充电IC电路(VIN:9V) PL7022/B 是一款基于 CMOS 的双
    发表于 09-10 14:17

    锂电池保护芯片PL7022,双锂电池充电芯片PL7501C

    :xiaofeng@szparkson.net双锂电池保护芯片PL7022:特点:l两锂离子或锂聚合物电池的理想
    发表于 09-10 20:31

    串联锂电池充电IC,2款芯片测试板充电测试

    `第一款三串联锂电池充电IC,电路图,充电测试: PW4203是一款4.5V-22V输入,最大2A充电
    发表于 11-25 11:30

    锂电池充电管理芯片 IC电路图如何设计

    电压,放电电压和过流保护等功能,和电解反接,输出短路保护等2.三锂电池
    发表于 12-12 09:39

    锂电池充电管理芯片电路

    充电电压,放电电压和过流保护等功能,和电解反接,输出短路保护等      2. 三
    发表于 01-28 17:16

    一款高精度的单可充电锂电池 的过充电和过放电保护电路

    NKDW01A电路是一款高精度的单可充电锂电池 的过充电和过放电保护
    发表于 04-16 10:52

    高精度的单可充电锂电池 的过充电和过放电保护电路

    NKDW01A电路是一款高精度的单可充电锂电池 的过充电和过放电保护
    发表于 04-20 09:25

    PL7152 双可充电锂电池保护电路

    概述 PL7152 是一款基于 CMOS 的双可充电锂电池保护电路,它集高精度过电压
    发表于 09-23 11:54

    PL7022和双可充电锂电池保护电路芯片数据手册免费下载

    PL7022/B 是一款基于 CMOS 的双可充电锂电池保护电路,它集高精度过电压
    发表于 09-18 08:00 40次下载
    PL7022和双<b class='flag-5'>节</b><b class='flag-5'>可充电</b><b class='flag-5'>锂电池</b><b class='flag-5'>保护</b><b class='flag-5'>电路</b>芯片数据手册免费下载

    锂电池保护IC,适用于锂电池放电充电保护

    锂电池串联管理系列选型表:型号封装功能PL7022BSOT23-6双锂电池串联保护ICPL7022SOT23-6双
    的头像 发表于 05-07 16:30 1642次阅读
    双<b class='flag-5'>节</b><b class='flag-5'>锂电池</b><b class='flag-5'>保护</b>IC,适用于<b class='flag-5'>锂电池</b>放电<b class='flag-5'>充电</b><b class='flag-5'>保护</b>

    锂电池充电电路图如何设计 三锂电池充电管理芯片电路图解析

     1.三锂电池保护电路,芯片电路图   控制三
    的头像 发表于 08-03 12:19 5172次阅读
    <b class='flag-5'>锂电池</b><b class='flag-5'>充电</b><b class='flag-5'>电路</b>图如何设计 三<b class='flag-5'>节</b><b class='flag-5'>锂电池</b><b class='flag-5'>充电</b>管理芯片<b class='flag-5'>电路</b>图解析

    PL7022 CMOS双4.35V可充电锂电池保护电路

    概述:PL7022/B是一款基于CMOS的双可充电锂电池保护电路,它集高精度过电压
    发表于 07-23 10:42 7次下载

    PL7022/B CMOS 双可充电锂电池保护电路

    概述PL7022/B是一款基于CMOS的双可充电锂电池保护电路,它集高精度过电压
    发表于 09-19 15:21 3次下载

    可充电锂电池的过充电和过放电保护电路PL7071数据手册

    电子发烧友网站提供《单可充电锂电池的过充电和过放电保护电路PL7071数据手册》资料免费下载
    发表于 02-25 09:10 0次下载