0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何提供超低功耗 ML 以实现更有效的嵌入式视觉

杨静 来源:joereil 作者:joereil 2022-07-14 18:04 次阅读

机器学习算法开辟了一个可能性领域,可以将视觉嵌入到产品中,使我们的家庭、工作空间以及介于两者之间的地方更安全、更高效。为了在更多用例中真正发挥智能视觉的潜力,开发人员需要更节能、更灵活的嵌入式解决方案,这些解决方案可以依靠电池供电,易于安装和维护,同时仍能提供提供有效和智能所需的视觉性能感知我们想要检测和监控的事物。ML 建模和处理的新进展是智能相机广泛采用的关键。

负担得起的远程视觉监控过去意味着红外运动检测器:便宜、自主,但不一定有效。我的一个朋友最近用一套联网的摄像机保护了他的后院。摄像头使用红外运动检测唤醒,然后将视频发送到应用程序。

问题是,他后院的运动检测意味着检测从邻居松鼠到微风中吹来的风铃等一切事物。他的视频剪辑太多了,以至于他可以理解地忽略了它们——包括有一天,一个窃贼从后院闯入他的房子。

直到最近,另一种选择是将视频输入控制室,如果发生重要事情,您可能希望人类观察者会在屏幕上注意到。这种方法提供了更多的保护,但费用和能源消耗要大得多。我们确实需要介于两者之间的东西:便宜、电池供电,但比简单的运动检测更具辨别力。理想情况下,该系统将具有足够的嵌入式智能,首先将事件确定为“真实事件”,然后再唤醒功能更强大的摄像头,该摄像头在向应用程序发送通知后记录和流式传输高分辨率视频。

今天,机器学习技术的巨大进步极大地改进了无人值守的视频分析。现在,带有高性能深度学习推理加速器芯片或与云数据中心的宽带连接的高清摄像头可以显着增强和改进传统的安全和监控方法。事实上,这样的深度学习系统已经展示了非凡的能力:面部识别、手势解释——例如,检测入店行窃——甚至情绪估计——甚至检测入店行窃的诱惑。或许这些能力已经变得有点太了不起了。

但这些系统仍然很昂贵。它们需要外部电源和宽带连接。而且由于它们的能力如此之强,它们会引发安全和隐私问题,这可能会限制它们的部署或增加监管障碍。

天平的另一端,回到那个不起眼的红外运动传感器呢?仍然有许多应用程序只检测一个人的存在——而不识别他们或估计他们的心理特征——就足够了。其中许多应用程序需要外部电源的自主权,并且只能提供有限的连接回网络。许多需要非常低的成本。他们呢?

最近在超低功耗机器学习加速方面取得的重大进展现在可以回答这个问题。

可能受益的应用程序类型

要在上下文中理解这一突破,让我们仔细看看一些用例。例如,在许多安全和安保应用中,重要的是要知道您正在监控的区域是否有人在场。这可能是为了检测入侵者,确保没有人靠近危险设备,或者只是打开一些灯以避免有人在黑暗的房间里绊倒。你并不真正关心这个人是谁,但你也不会对松鼠和管状铃铛的误报感兴趣,比如那些在我朋友后院引发警报的东西。

事实证明,这对于机器学习来说是一个很好的应用——事实上,对于一个非常简单的机器学习模型来说。在这种情况下,模型是一组数据和指令,通过一个称为训练的过程运行大量数据而建立,机器学习系统使用这些数据和指令来生成推理——例如,是的,有人的推理在图像中,或者没有,图像中的人物是老板的金毛猎犬。

大流行创造了另一类应用程序,不幸的是,这些应用程序可能会伴随我们一段时间:社交距离监控。控制进入封闭空间以确保人员不超过容量限制至关重要。要做到这一点,最好的方法是在门口没有人工看守的情况下,是一个可以在人员进出时统计人数的系统。是的,这只是人员检测的另一种用途。这种系统的一个附加功能是检测相关人员是否戴着口罩。对于经过训练的机器学习模型来说,这也是一项相对简单的任务。

事实证明,有一个完全不同的应用领域密切相关。组织已经更加关注他们在办公空间上的花费,并根据空间的使用方式来决定如何最好地优化空间。当办公室经理考虑使用更小(且更便宜)且通常是共享的工作空间时尤其如此。但是你无法优化你无法衡量的东西。突然,有许多新的问题。有人用这个走廊吗?咖啡厅什么时候忙?有多少个热桌可用?三个会议室都被占用多久?此类数据对于在不降低生产力的情况下最大限度地减少办公费用至关重要。同样,您无需识别人员或了解他们在做什么。您只想能够检测到它们的存在。

让我们看一下当今大多数公司所考虑的典型现实情况:一家公司在曼哈顿或旧金山市中心等昂贵的市中心地区的高层建筑中设有办公室。他们有四十个隔间和五个会议室。隔间被占用了工作周的至少一部分。根据高架摄像头的人员检测/计数输入,只有三个会议室的使用率比其他两个多得多。现在,当公司扩大规模,需要再雇用 20 人时,他们可以分析隔间和会议室的实际使用情况,而不是在同一栋大楼中租用另一层楼以支付高额租金。解决方案可能是将其中一个未使用的会议室改造成额外的 20 个隔间,或者提出一种灵活的混合模型,在人们需要时为他们提供工作空间,并最大限度地利用现有隔间。这将导致巨大的成本运营支出节省,并且可以随着容量和劳动力习惯的变化而调整。

检测特定属性

这带来了另一类应用程序:合规性检查。可以训练机器学习系统来检测人的可见属性。此人是否有可见的 ID 徽章?安全帽或呼吸器怎么样?该人是否将点燃的香烟带入易爆气体泄漏的房间?

经验表明,机器学习模型可以比旧式视觉处理软件算法更好地执行这类检测任务。机器学习模型也可以比人类监视器更准确和可靠,尤其是在需要长时间持续关注的情况下。当任务是检测时——不是识别个人、解释手势或其他需要基于大量精细细节进行细微推断的任务——模型可以非常紧凑。

如果模型紧凑,并且如果视频数据以适中的速率进入而不是以 60Hz 的频率涌入,例如逐行扫描 UHD,那么所需的处理能力也可能适中。它需要的不仅仅是一个典型的微控制器芯片所能提供的,但远远低于你从为高性能计算设计的推理加速器或从耗电量大的 GPU 中获得的东西。

这将是应用近年来为超低功耗计算开发的技术的理想场所:存储器、控制器信号处理器。这些技术可以使机器学习推理加速器足够快地完成视觉检测任务,但功耗却足够低,可用于无人值守的电池供电操作。

加上恰到好处的速度会带来额外的好处。这种设备有限的速度和内存容量使得几乎不可能将芯片用于未经授权的任务,例如面部识别。这一事实可以大大减轻在对隐私监管敏感的领域部署系统的监管负担。

一个可以提供这个的例子

事实上,这样的超低功耗机器学习加速器已经存在:Synaptics 的 Katana KA 10000 SoC。该芯片集成了一组处理器,包括一个 Arm CPU、多个 DSP 内核和一个定制的神经网络加速器,为一系列不同类型的中等规模机器学习模型提供完整的推理加速平台。

到目前为止,这种描述同样适用于许多用于高性能计算的 AI 加速芯片。但是,当您的目标是数月的电池寿命而不是每秒数十次千兆操作时,您必须从一开始就以不同的方式做事。

这意味着从针对低功耗而非最高速度优化的半导体工艺技术开始。这意味着设计的电路只消耗足够的功率来完成手头的任务,并且在不需要时关闭。这意味着选择处理器架构,例如 Arm Cortex-M33 CPU、DSP 内核和专有的神经处理单元,它们可以协作以尽可能少的电池消耗而不是尽可能少的时间延迟来完成给定的推理。它还意味着为摄像头和麦克风提供片上、低功耗存储器和外围接口

对于将在现场使用的 SoC,处理敏感的个人数据,安全性也是首要考虑的问题。密钥的安全存储、安全启动和代码更新以及硬件辅助加密都是必须在硬件级别解决的问题。

在实践中可以期待什么结果?

那么,专注于超低功耗的成功程度如何?Synaptics 声称 KA10000 可以处理传入的视频并每秒产生 10 次推理,同时使用一块电池运行近三年。

对于非专业软件开发人员来说,所有这些任务都可能令人生畏。该过程可能需要 6 到 9 个月——如果出现任何问题,甚至更长时间——因此部署边缘 AI 设备可能会是一项耗时的工作,将时间表、预算甚至市场窗口都置于风险之中。

成功需要硬件、软件和 IP 提供商的协作生态系统。例如,Synaptics 通过与 Edge Impulse 等 MLOps 公司的合作,帮助加快了这一进程。使用带有 Synaptics 的 Katana 平台的 Edge Impulse 环境,客户可以在几天内制作模型原型,并在几个月内构建生产模型。这意味着差异化、超低功耗边缘人工智能设备的低风险和快速部署。

芯片行业首次响应了廉价自主相机中对有效和特定用例机器学习的需求。现在提供的解决方案以极具吸引力的成本和性能点提供综合但适合普通人的开发环境和完整的神经网络增强 SoC 的组合。这开辟了低功率人体检测和其他视觉检测能力的前沿,将以多种方式改善我们的生活。

审核编辑 黄昊宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4606

    浏览量

    92801
  • 超低功耗
    +关注

    关注

    5

    文章

    180

    浏览量

    18425
  • ML
    ML
    +关注

    关注

    0

    文章

    149

    浏览量

    34639
  • 嵌入式视觉
    +关注

    关注

    8

    文章

    117

    浏览量

    59143
收藏 人收藏

    评论

    相关推荐

    LDO在嵌入式系统中的应用 常见LDO故障及解决方法

    的应用及其常见故障和解决方法的概述。 应用场景 电源转换 :LDO可以将电池电压或其他电源电压转换为嵌入式系统所需的稳定电压。 噪声抑制 :LDO能有效降低电源线上的噪声,为敏感的模拟电路提供干净的电源。
    的头像 发表于 12-13 09:08 232次阅读

    如何利用FPGA技术革新视觉人工智能应用?

    有效分析和解释视觉数据。挑战要满足嵌入式人工智能应用的严格要求,选择合适的硬件平台至关重要。这些要求包括在保持低功耗的同时,最小的确定性延
    的头像 发表于 10-16 08:03 425次阅读
    如何利用FPGA技术革新<b class='flag-5'>视觉</b>人工智能应用?

    ARMxy嵌入式计算机在机器视觉中的卓越表现

    嵌入式视觉是指在嵌入式系统中使用计算机视觉技术,与经常所说的机器视觉系统的区别在于嵌入式
    的头像 发表于 10-10 14:47 233次阅读
    ARMxy<b class='flag-5'>嵌入式</b>计算机在机器<b class='flag-5'>视觉</b>中的卓越表现

    利用相对湿度传感器增强功能实现超低功耗系统

    电子发烧友网站提供《利用相对湿度传感器增强功能实现超低功耗系统.pdf》资料免费下载
    发表于 09-27 10:39 0次下载
    利用相对湿度传感器增强功能<b class='flag-5'>实现</b><b class='flag-5'>超低功耗</b>系统

    超低功耗和动态性能的线性电源

    电子发烧友网站提供超低功耗和动态性能的线性电源.pdf》资料免费下载
    发表于 09-18 11:22 0次下载
    <b class='flag-5'>超低功耗</b>和动态性能的线性电源

    嵌入式系统的未来趋势有哪些?

    会更加注重能源效率。低功耗设计和节能技术会成为关键,延长设备的电池寿命或降低能源成本。这对于可穿戴设备、便携医疗设备等对续航能力有较高要求的产品尤为重要。 4. 多模块与集成化 在未来的
    发表于 09-12 15:42

    适用于超低功耗低功耗应用的独特高效隔离DC/DC转换器

    电子发烧友网站提供《适用于超低功耗低功耗应用的独特高效隔离DC/DC转换器.pdf》资料免费下载
    发表于 08-31 09:41 0次下载
    适用于<b class='flag-5'>超低功耗</b>和<b class='flag-5'>低功耗</b>应用的独特高效隔离<b class='flag-5'>式</b>DC/DC转换器

    AI普及给嵌入式设计人员带来新挑战

    探讨了人工智能(AI)的普及给嵌入式设计人员带来的新挑战。在创建“边缘机器学习(ML)”应用时,设计人员必须确保其能有效运行,同时最大限度地降低处理器和存储开销,以及物联网(IoT)设备的功耗
    发表于 08-22 14:20 663次阅读
    AI普及给<b class='flag-5'>嵌入式</b>设计人员带来新挑战

    AFE4900超低功耗、集成AFE数据表

    电子发烧友网站提供《AFE4900超低功耗、集成AFE数据表.pdf》资料免费下载
    发表于 07-31 10:48 3次下载
    AFE4900<b class='flag-5'>超低功耗</b>、集成<b class='flag-5'>式</b>AFE数据表

    机器视觉嵌入式中的应用

    机器视觉嵌入式系统中的应用是一个广泛而深入的话题,涉及到许多不同的领域和技术。 机器视觉嵌入式系统中的应用 1. 引言 机器视觉是一种模
    的头像 发表于 07-16 10:30 504次阅读

    嵌入式产品的低功耗调试实用技巧

    嵌入式产品的低功耗调试是一件较麻烦的事情,因为它既涉及到硬件又涉及到软件,影响因素非常多。但是又十分重要,因为它关系到产品的实际使用时长。
    发表于 04-28 10:23 330次阅读
    <b class='flag-5'>嵌入式</b>产品的<b class='flag-5'>低功耗</b>调试实用技巧

    嵌入式热门发展方向有哪些?

    良好的感知能力,能够根据复杂的环境作出优良的决策。此外,嵌入式系统在计算机视觉方面的应用,可以有效的识别和定位目标,采集相关的信息,能够实现人脸识别、行车辅助、运动跟踪等实时
    发表于 04-11 14:17

    芯来科技发布超低功耗嵌入式RISC-V处理器CPU IP—NS100系列内核

    本土RISC-V CPU IP领军企业——芯来科技正式发布针对信息安全的超低功耗嵌入式RISC-V处理器CPU IP——NS100系列内核,主要针超低功耗下的信息安全应用。
    的头像 发表于 03-04 11:19 1367次阅读
    芯来科技发布<b class='flag-5'>超低功耗</b><b class='flag-5'>嵌入式</b>RISC-V处理器CPU IP—NS100系列内核

    立仪科技发布嵌入式低功耗光谱共焦E系列

    新品发布:立仪科技发布嵌入式低功耗光谱共焦E系列 立仪科技作为国产光谱共焦技术的引领者,在光谱共焦技术上数年磨一剑,打破封锁,而此次研发出的E系列控制器是基于光谱共焦技术,嵌入式低功耗
    的头像 发表于 02-22 14:15 571次阅读
    立仪科技发布<b class='flag-5'>嵌入式</b><b class='flag-5'>低功耗</b>光谱共焦E系列

    SEGGER调试低功耗模式

    低功耗模式是现代嵌入式系统设计中一个非常重要的考虑因素。为了延长电池续航时间、降低能耗以及满足可持续发展的需求,嵌入式系统需要能够有效地进入低功耗
    的头像 发表于 01-02 16:36 612次阅读