0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何实现遥感图像等超大尺寸图像快速识别

OpenCV学堂 来源:OpenCV学堂 作者:OpenCV学堂 2022-07-14 09:47 次阅读

一般情况下,遥感目标检测中,遥感图像的图片尺寸都会很大,且图像中元素极为复杂,近期开赛的亚马逊科技AI For Good - 2022 遥感光学影像目标检测挑战赛】也不例外,动辄超过10000 x 10000的卫星遥感图像让许多选手感到头疼。同时遥感影像中目标尺寸差别大、小而密集、角度各异也导致常见的CV框架难以实现快速精准的目标识别。所以,如何实现遥感图像等超大尺寸图像快速识别?

目前比较成熟的卫星图像识别算法并不少,但大多依托于强大的计算资源,为了用有限的计算资源实现大尺寸图像识别,我们找到了一个可行的开源框架,给大尺寸图像识别提供了不错的思路。

YOLT 是一个基于YOLO v2的卫星图像识别开源算法,核心思路是:

1. 通过图片裁切和图像网络重构解决图像尺寸问题;

2. 通过“上采样”提升小而聚集的目标的检测精度;

3. 通过将不同尺寸模型融合,提升整体检测精度。

YOLT项目地址:GitHub - avanetten/yolt: You Only Look Twice: Rapid Multi-Scale Object Detection In Satellite Imagery

YOLO是经典的图像识别算法,YOLT在YOLO的基础上针对卫星图像特有的问题提出了特定的解决思路。详细思路参见论文「You Only Look Twice: Rapid Multi-Scale Object Detection In Satellite Imagery」(GitHub项目中附有论文链接)。

e58432fc-0310-11ed-ba43-dac502259ad0.png

▲左侧为常见问题,右侧为解决办法

1. 针对物体尺寸不规则、方向多样的问题,YOLT对卫星图像数据进行尺寸变换与旋转等数据增强的处理。

2. 针对目标尺寸过小并聚集的问题,YOLT框架主要采用3种方式进行处理:

(1) 修改图像网络结构,将YOLO v2框架中的stride由32改为16,有利于检测出大小在32 x 32以下的目标

(2) 对图像进行上采样,完成图片的“解压缩”操作,即把原先的图片放大,以便检测小而密集的物体

(3) 将不同尺寸的检测模型进行融合,即Ensemble操作,由于不同目标的尺寸差异可能较大,如海港与船只、机场与飞机,Ensemble操作能够提升大尺寸差异下的识别精度。

针对卫星图像尺寸过大的问题,YOLT采用切块的方式,将原始图像切割成小块后输入模型进行训练,并结合2-(3)进行模型融合。

e5b76f8c-0310-11ed-ba43-dac502259ad0.png

▲ YOLT的网络结构,输出特征尺寸多为26 x 26,可以提升检测精度

应用实例

从下面的检测实例中,我们可以看到YOLT是如何工作的:

首先,开发团队将一张卫星图片调整至416 x 416大小(如上左),发现无法检测出车辆目标;而从原图中切割出416 x 416的区域(称其为Chips)则可以实现部分车辆目标的检测。

顺着这个思路,开发团队采用划窗方式将原始图像切割为许多chips,并使相邻chips之间有一定重合(如上图),以确保图像检测的完整性。再利用NMS算法将重复检测过滤,最后将各块的检测结果进行融合,即可得出最后的结果。

▲ 检测实例:采用YOLT v4识别机场中的飞机

YOLT的思路不止可以应用于卫星图像识别,同样可以在目标尺寸小且密集的其他类图像识别问题中发挥作用。

对本次亚马逊【AI For Good - 2022 遥感光学影像目标检测挑战赛】的选手而言,YOLT的解决思路能够帮助大家越过图片尺寸过大的第一道坎。

原文标题:如何实现超大尺寸图像快速识别

文章出处:【微信公众号:OpenCV学堂】欢迎添加关注!文章转载请注明出处。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 卫星
    +关注

    关注

    18

    文章

    1699

    浏览量

    66880
  • 模型
    +关注

    关注

    1

    文章

    3158

    浏览量

    48701
  • 遥感图像
    +关注

    关注

    0

    文章

    40

    浏览量

    10108

原文标题:如何实现超大尺寸图像快速识别

文章出处:【微信号:CVSCHOOL,微信公众号:OpenCV学堂】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    基于FPGA+GPU异构平台的遥感图像切片解决方案

    大型遥感图像分割成图像切片信息,以便更有效地处理和分析图像数据。中科亿海微自主研制的AI目标识别加速卡,基于FPGA+GPU异构并行计算处理
    的头像 发表于 09-20 08:05 348次阅读
    基于FPGA+GPU异构平台的<b class='flag-5'>遥感</b><b class='flag-5'>图像</b>切片解决方案

    图像识别算法有哪几种

    图像识别算法是计算机视觉领域的核心技术之一,它通过分析和处理图像数据,实现图像中的目标、场景和物体的识别和分类。
    的头像 发表于 07-16 11:22 932次阅读

    图像检测和图像识别的原理、方法及应用场景

    图像检测和图像识别是计算机视觉领域的两个重要概念,它们在许多应用场景中发挥着关键作用。 1. 定义 1.1 图像检测 图像检测(Object Detection)是指在
    的头像 发表于 07-16 11:19 3202次阅读

    图像识别算法都有哪些方法

    图像识别算法是计算机视觉领域的核心任务之一,它涉及到从图像中提取特征并进行分类、识别和分析的过程。随着深度学习技术的不断发展,图像识别算法已经取得了显著的进展。本文将介绍
    的头像 发表于 07-16 11:14 5082次阅读

    图像识别算法的优缺点有哪些

    图像识别算法是一种利用计算机视觉技术对图像进行分析和理解的方法,它在许多领域都有广泛的应用,如自动驾驶、医疗诊断、安全监控。然而,图像识别算法也存在一些优缺点。 一、
    的头像 发表于 07-16 11:09 1316次阅读

    图像识别算法的核心技术是什么

    中提取出有用的信息,为后续的分类和识别提供依据。特征提取的方法有很多,常见的有: 1.1 颜色特征:颜色是图像最基本的属性之一,常见的颜色特征有颜色直方图、颜色矩。 1.2 纹理特征:纹理是
    的头像 发表于 07-16 11:02 564次阅读

    图像识别技术包括自然语言处理吗

    计算机视觉技术对图像进行处理、分析和理解,从而实现图像中的目标、场景、行为信息的识别和理解。图像识别
    的头像 发表于 07-16 10:54 620次阅读

    图像识别技术的原理是什么

    图像识别技术是一种利用计算机视觉和机器学习技术对图像进行分析和理解的技术。它可以帮助计算机识别和理解图像中的对象、场景和活动。 图像预处理
    的头像 发表于 07-16 10:46 819次阅读

    图像识别属于人工智能吗

    的过程。它涉及到图像的获取、预处理、特征提取、分类和识别多个环节。 1.2 重要性 图像识别技术在人工智能领域具有重要的地位,它使计算机能够“看”和“理解”
    的头像 发表于 07-16 10:44 936次阅读

    opencv图像识别有什么算法

    图像识别算法: 边缘检测 :边缘检测是图像识别中的基本步骤之一,用于识别图像中的边缘。常见的边缘检测算法有Canny边缘检测器、Sobel边缘检测器和Laplacian边缘检测器。 特
    的头像 发表于 07-16 10:40 807次阅读

    如何利用CNN实现图像识别

    卷积神经网络(CNN)是深度学习领域中一种特别适用于图像识别任务的神经网络结构。它通过模拟人类视觉系统的处理方式,利用卷积、池化操作,自动提取图像中的特征,进而实现高效的
    的头像 发表于 07-03 16:16 1087次阅读

    图像检测与识别技术的关系

    检测技术是指利用计算机视觉技术,对图像中的特定目标进行定位和识别的过程。它通常包括图像预处理、特征提取、目标检测和后处理步骤。图像检测技术
    的头像 发表于 07-03 14:43 527次阅读

    图像检测和图像识别的区别是什么

    详细的比较和分析。 定义和概念 图像检测(Image Detection)是指利用计算机视觉技术对图像中的特定目标进行定位和识别的过程。它通常包括目标的检测、分类和定位三个步骤。图像
    的头像 发表于 07-03 14:41 786次阅读

    图像识别技术原理 图像识别技术的应用领域

    图像识别技术是一种通过计算机对图像进行分析和理解的技术。它借助计算机视觉、模式识别、人工智能相关技术,通过对图像进行特征提取和匹配,找出
    的头像 发表于 02-02 11:01 2246次阅读

    如何使用Python进行图像识别的自动学习自动训练?

    如何使用Python进行图像识别的自动学习自动训练? 使用Python进行图像识别的自动学习和自动训练需要掌握一些重要的概念和技术。在本文中,我们将介绍如何使用Python中的一些常用库和算法来实现
    的头像 发表于 01-12 16:06 535次阅读