0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电池循环前后正极电解质界面(CEI)的变化

锂电联盟会长 来源:锂电联盟会长 作者:锂电联盟会长 2022-07-26 15:03 次阅读

尖晶石类型的LiNi0.5Mn1.5O4(LNMO)因其高能量密度和低制造成本,是5V级别正极材料中非常有希望的一员。然而在液态电池中,高电压会导致液态电解质的氧化分解,从而引起持续的电池性能衰减。与之形成对比的是,一些具有较宽电化学窗口的固态电解质如锂磷氮氧(LiPON),能与高压正极匹配并展现优异的循环性能,不过其界面稳定性的根本原因仍不为所知。

【工作简介】近日,加州大学圣地亚哥分校(UCSD)的孟颖课题组以LNMO正极,LiPON固态电解质和锂金属负极组成的薄膜电池作为平台,研究了电池循环前后正极电解质界面(CEI)的变化。该薄膜电池可以大于99%的库伦效率循环超过600圈。中子深度剖析(NDP)表明原始界面存在过锂化层,其中的锂量与第一圈的过量充电容量一致。冷冻电子显微镜(Cryo-EM)进一步观察到LNOM与LiPON的界面在循环之后的完好接触,并不存在明显的结构和化学成分变化,证明了LiPON对高压正极的稳定性。在此基础上,本文提出了界面工程中应注意的设计准则,以期推动高压正极在液态或固态电池中的商业化。该文章发表在国际顶级期刊Advanced Energy Materials。Ryosuke Shimizu和程迪一为本文共同第一作者。

【核心内容】LNMO/LiPON/Li薄膜电池有着出色的电池寿命及循环性能,然而背后却是尚待揭开的界面稳定性之谜,深入理解LiPON与金属锂负极和高电压LNMO正极界面的稳定性成因,对于使用界面工程制造下一代高能量密度的金属锂电池有着重要的指导意义。其中LNMO/LiPON界面属于固-固界面,由于LiPON对电子束不稳定性和空气敏感性,可以有效地用来表征这种全固态界面的手段非常受限。本文中利用了对Li等轻元素非常敏感的无损表征手段NDP和降低样品损伤的cryo-EM在表征过程中有效地保持了材料/界面的原始结构及化学信息,辅以第一性原理计算,从而使得表征LiPON与正极材料的界面成为可能。

1. LNMO/LiPON/Li薄膜电池电化学表征

49ed4fa2-05a6-11ed-ba43-dac502259ad0.png

图1. LNMO/LiPON/Li全电池电化学性能。(a)LNMO/LiPON/Li 薄膜电池在第 1、第 2 和第 600 圈的电压曲线;(b)电池在600圈循环中的的库仑效率变化

LNMO/LiPON/Li薄膜电池电化学曲线中第二圈与第600圈的电压曲线基本重合,表现出其优异的循环性能。在第一圈循环中,有过量容量出现在充电过程中,然而从第二圈开始过量容量不再出现。图1(a)中进一步观察可以发现,与之后的循环相比,第一圈充电过程中除了主要贡献容量的Ni2+/Ni3+和 Ni3+/Ni4氧化还原反应平台(~4.7V),同样也存在着较长的Mn3+/Mn4+平台(2.9V和4V),意味着LNMO正极中的Mn元素很有可能在循环开始之前就已经因为过锂化而被还原。

2. LNMO/LiPON界面过锂化及DFT预测Mn离子还原

4a07300c-05a6-11ed-ba43-dac502259ad0.png

图2. (a)NDP测量装置的图示;(b)LNMO/LiPON界面以及LNMO正极的NDP测量结果;(C)NDP模拟显示LNMO/LiPON界面的Li含量变化;(d)DFT计算中超晶格结构示意图;LNMO从过锂化状态到脱锂化状态中(e)Ni和Mn的磁化数变化和对应的价态显示以及(f)超晶胞中C晶格常数的变化。

此处作者利用NDP测量了包覆了LiPON的LNMO薄膜正极体系中Li含量的在厚度方向变化。通过与仅含LNMO正极的样品结果对比,以及相应的模拟,作者们发现在沉积了LiPON之后,LNMO表面会有大约3%的过量Li存在。在此基础上,密度泛函理论(DFT)计算结果表明当LNMO正极被过锂化时,LNMO中元素价态发生变化的主要集中在Mn离子,而Ni离子的价态基本保持不变。同时过量Li导致了LNMO超晶胞在C方向上被拉长,由立方相转变成四方相,出现Jahn-Teller畸变。此畸变出现的原因亦是Mn元素被还原,与磁化数计算结果相吻合。

3. Cryo-EM观测Mn在LNMO/LiPON界面的还原现象

4a1f577c-05a6-11ed-ba43-dac502259ad0.png

图3. LNMO/LiPON界面的Mn价态变化。(a)循环前和(d)循环后LNMO/LiPON界面的高角环形暗场图像;(b)循环前和(e)循环后Mn L-edge EELS谱在LNMO/LiPON界面的变化;(c)循环前和(f)循环后Mn元素价态在LNMO/LiPON界面的变化及与LNMO正极薄膜信号的对比。

为了进一步验证LNMO/LiPON界面处Mn还原现象,作者们利用Cryo-EM观测了LNMO/LiPON界面在循环前后的化学成分变化。电子能量损失图谱(EELS)显示循环前的LNMO正极表面的Mn元素在接近LiPON的区域有明显的价态降低现象,而在循环之后LNMO表面的Mn元素价态皆有上升,证明了在原始界面上由于过锂化而产生的Mn的还原现象。此现象可能与LiPON可以耐受高压LNMO正极有关联。

4. LNMO/LiPON界面的纳米形貌结构

4a382162-05a6-11ed-ba43-dac502259ad0.png

图4. LNMO/LiPON界面的形貌结构。(a-c)循环前LNMO/LiPON界面的高分辨TEM图像;(d-f)循环后LNMO/LiPON界面的高分辨TEM图像;(g-k)循环后LNMO/LiPON界面不同区域的高分辨TEM图像。

作者接着用Cryo-EM观察了LNMO/LiPON界面的纳米形貌及结构。循环前后LNMO/LiPON界面始终保持紧密的接触,没有发现孔洞或裂隙,证明了界面力学性能可以耐受循环过程中的应力变化。LNMO在与LiPON接触处没有发现明显的结构变化,意味着LNMO表面没有发生岩盐相转变,在LiPON的体系中能保持表面结构稳定。同时高分辨TEM图像没有观察到明显的CEI生成,从另一个角度验证了LiPON的电化学稳定性。

【结论】基于以上结果,LNMO/LiPON界面的稳定性主要来源于两个方面-LNMO的结构特性以及LiPON自身的特性。(1)尖晶石结构的LNMO可以承受由于LiPON沉积过程造成的表面过量锂化而不被破坏其可循环性及结构稳定性;与之对比的是层状结构正极材料如钴酸锂,在过锂化的情况下会在其表面产生无序相,从而降低循环性能;LNMO能承受过锂化的性质使之可以与LiPON沉积过程匹配,同时过锂化的界面有助于防止由于表面Li化学势不匹配而导致的界面反应。(2)从LiPON的角度看,LiPON的电化学稳定性使其能与高压正极保证长循环性;其次LiPON的机械性能保证了在循环过程中不会有裂隙或分层出现;LiPON的薄膜沉积工艺进一步促使形成了在LNMO表面致密均匀的包裹,保证了在LNMO表面不会产生孔洞并能均匀的过锂化。由此,本文以结论中提到的以上几点以期能对液态和固体电池中界面工程工作提供有用的思路。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电解质
    +关注

    关注

    6

    文章

    814

    浏览量

    20084
  • 显微镜
    +关注

    关注

    0

    文章

    565

    浏览量

    23068
  • 固态电池
    +关注

    关注

    10

    文章

    700

    浏览量

    27830

原文标题:孟颖课题组:揭秘5V级别全固态薄膜电池中正极电解质界面的稳定性来源

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    一种薄型层状固态电解质的设计策略

    研 究 背 景 用固态电解质(SSE)代替有机电解液已被证明是克服高能量密度锂金属电池安全性问题的有效途径。为了开发性能优异的全固态锂金属电池(ASSLMB),SSE通常需要具备均匀且
    的头像 发表于 12-31 11:21 104次阅读
    一种薄型层状固态<b class='flag-5'>电解质</b>的设计策略

    半互穿网络电解质用于高电压锂金属电池

    研究背景 基于高镍正极的锂金属电池的能量密度有望超过400 Wh kg-1,然而在高电压充电时,高镍正极在高度去锂化状态下,Ni4+的表面反应性显著增强,这会催化正极
    的头像 发表于 12-23 09:38 237次阅读
    半互穿网络<b class='flag-5'>电解质</b>用于高电压锂金属<b class='flag-5'>电池</b>

    通过电荷分离型共价有机框架实现对锂金属电池固态电解质界面的精准调控

    (-3.04 V vs SHE),被认为是次世代电池的最优选择。然而,锂金属负极的实际应用面临诸多挑战,其中最关键的问题是锂枝晶的生长和副反应的发生。这些问题不仅会导致电池寿命急剧下降,还会引发严重的安全隐患,如短路和热失控。 固态电解
    的头像 发表于 11-27 10:02 323次阅读
    通过电荷分离型共价有机框架实现对锂金属<b class='flag-5'>电池</b>固态<b class='flag-5'>电解质</b><b class='flag-5'>界面</b>的精准调控

    固态电池中复合锂阳极上固体电解质界面的调控

    采用固体聚合物电解质(SPE)的固态锂金属电池(SSLMB)具有更高的安全性和能量密度,在下一代储能领域具有很大的应用前景。
    的头像 发表于 10-29 16:53 453次阅读
    固态<b class='flag-5'>电池</b>中复合锂阳极上固体<b class='flag-5'>电解质</b><b class='flag-5'>界面</b>的调控

    无极电容器有电解质吗,无极电容器电解质怎么测

    无极电容器通常存在电解质电解质在无极电容器中起着重要作用,它可以增加电容器的电容量和稳定性。然而,电解质也可能带来一些问题,如漏电和寿命问题。
    的头像 发表于 10-01 16:45 400次阅读

    具有密集交联结构的明胶基水凝胶电解质(ODGelMA)

    目前,开发一种能够成功实现兼具机械强度、离子电导率和界面适应性的综合水凝胶电解质基质仍然具有挑战性。
    的头像 发表于 05-22 09:17 797次阅读
    具有密集交联结构的明胶基水凝胶<b class='flag-5'>电解质</b>(ODGelMA)

    氧化物布局格局一览 氧化物电解质何以撑起全固态?

    今年以来,各式各样的半固态、全固态电池开始愈发频繁且高调地现身,而背后均有氧化物电解质的身影。
    的头像 发表于 05-16 17:41 1101次阅读

    铌酸锂调控固态电解质电场结构促进锂离子高效传输!

    聚合物基固态电解质得益于其易加工性,最有希望应用于下一代固态锂金属电池
    的头像 发表于 05-09 10:37 809次阅读
    铌酸锂调控固态<b class='flag-5'>电解质</b>电场结构促进锂离子高效传输!

    电解质电极信号采集控制板

    1、产品介绍: 本产品是测量分析人体的血清或者尿液中K,NA CL CA PH LI CL CO2 等离子的浓度含量。 2、应用场景: 电解质分析仪。 3、产品概述: 主控芯片
    的头像 发表于 04-11 09:07 422次阅读
    <b class='flag-5'>电解质</b>电极信号采集控制板

    请问聚合物电解质是如何进行离子传导的呢?

    在目前的聚合物电解质体系中,高分子聚合物在室温下都有明显的结晶性,这也是室温下固态聚合物电解质的电导率远远低于液态电解质的原因。
    的头像 发表于 03-15 14:11 1255次阅读
    请问聚合物<b class='flag-5'>电解质</b>是如何进行离子传导的呢?

    不同类型的电池电解质都是什么?

    聚合物,如固态电池,固态陶瓷和熔融盐(如钠硫电池)中使用的聚合物。 铅酸电池 铅酸电池使用硫酸作为电解质。充电时,随着
    的头像 发表于 02-27 17:42 1604次阅读

    新型固体电解质材料可提高电池安全性和能量容量

    利物浦大学的研究人员公布了一种新型固体电解质材料,这种材料能够以与液体电解质相同的速度传导锂离子,这是一项可能重塑电池技术格局的重大突破。
    的头像 发表于 02-19 16:16 913次阅读

    弱溶剂化少层碳界面实现硬碳负极的高首效和稳定循环

    钠离子电池碳基负极面临着首次库伦效率低和循环稳定性差的问题,目前主流的解决方案是通过调节电解液的溶剂化结构,来调节固体电解质界面(SEI),
    的头像 发表于 01-26 09:21 1661次阅读
    弱溶剂化少层碳<b class='flag-5'>界面</b>实现硬碳负极的高首效和稳定<b class='flag-5'>循环</b>

    固态电解质离子传输机理解析

    固态电解质中离子的迁移通常是通过离子扩散的方式实现的。离子扩散是指离子从一个位置移动到另一个位置的过程,使得电荷在材料中传输。
    发表于 01-19 15:12 2835次阅读
    固态<b class='flag-5'>电解质</b>离子传输机理解析

    关于固态电解质的基础知识

    固态电解质在室温条件下要求具有良好的离子电导率,目前所采用的简单有效的方法是元素替换和元素掺杂。
    的头像 发表于 01-19 14:58 1.9w次阅读
    关于固态<b class='flag-5'>电解质</b>的基础知识