对更高效电子产品的追求集中在功率器件上,而半导体材料处于研发活动的前沿。硅的低成本和广泛的可用性使其在多年前取代锗成为主要的功率半导体材料。然而,今天,硅正在将其在功率器件中的主导地位让给两种效率更高的替代品:碳化硅 (SiC) 和氮化镓 (GaN)。
这些高度创新的材料属于宽禁带 (WBG) 半导体家族。WBG 非凡的物理和电气特性使这些材料自然而然地满足高频电源应用的性能要求,包括功率和工作温度极限,以及在紧凑外形中对更快、高效、低损耗开关的不断增长的要求。
最新的 WBG 设备市场分析预测估计,未来 10 年的复合年增长率 (CAGR) 约为 30%,使全球销售额从 2015 年的 2.1 亿美元增加到 2025 年的 37 亿美元。
WBG 特性和对电力电子
的适用性 宽带隙材料的物理和电气特性决定了用它们构建的功率半导体的功能和应用特性。从物理的角度来看,所有固态元素都有电子,这些电子要么与元素的核相连,要么在更高的能级(分别为价带和导带)上自由移动。价带和导带之间的能隙是定义和构建宽带隙半导体的基本物理参数。WBG 材料的巨大带隙转化为更高的击穿电场、更高的工作温度能力和更低的辐射敏感性。
硅的带隙为 1.12 电子伏特 (eV);砷化镓,1.4 eV;碳化硅,2.86 eV;和氮化镓,3.4 eV。随着工作温度的升高,价带中电子的热能相应增加,一旦达到特定的阈值温度,就会进入导带。在硅的情况下,从价带跃迁到导带所需的阈值温度为 150°C。由于它们的高能隙,WBG 半导体可以达到更高的温度,而无需电子积累能量。因此,带隙越大,可持续的半导体工作温度就越高。
与硅相比,SiC 和 GaN 的更高电子迁移率使得使用这些 WBG 材料构建的器件能够以更高的开关速度运行。宽带隙材料可以降低能耗。以热量形式耗散的能量减少不仅可以减少功率损耗,而且还可以实现更小的系统,与硅解决方案相比降低了成本。因此,WBG 半导体比硅等效物更有效。WBG 卓越的功率密度允许使用更紧凑的散热器,并支持更高的工作温度以及更高频率的开关。
开关频率的增加也降低了电感,并随之减小了所需电容器的尺寸。高开关频率可缩小元件尺寸,并显着降低噪音和振动。
Infineon Technologies、NXP Semiconductors 和 STMicroelectronics 等公司正在使用 WBG 材料来适应电动汽车、光电子和其他具有严苛工作条件的应用的新电源设计所涉及的高功率和频率。WBG 功率半导体超越了硅的性能极限,即使在关键的操作环境中也能保证出色的性能。WBG 器件还提供更低的导通电阻、更高的击穿电压以及更高的短期和长期可靠性。WBG 半导体的击穿电场允许更低的漏电流和更高的工作电压。
Gallium nitride has the highest electron mobility among the three options (GaN, SiC, and silicon), making it the optimal material for applications in which the required frequencies are very high. Silicon carbide, for its part, has higher thermal conductivity than either silicon or GaN. SiC, therefore, has the edge in efficiency in high-temperature applications because it maximizes the ability to conduct heat and thereby increases the achievable power density. Because of its high melting point and high thermal conductivity, SiC can operate at higher temperatures than silicon. SiC is preferred in power applications with high voltage and current values, whereas GaN remains the leading material for radio-frequency fields in which the voltages do not reach very high values but the breakdown electric fields are higher.
SiC technology can operate at voltages up to 1,700 V. As a result, SiC devices have almost completely displaced silicon insulated-gate bipolar transistors (IGBTs) in the energy, industrial, and transport sectors. GaN semiconductors, meanwhile, can operate at up to 600 V. GaN-based MOSFETs and Schottky diodes have lower losses than devices based on silicon IGBT technology.
Figure 1: Infineon leveraged its system and manufacturing expertise and its own SiC technology to produce the CoolSic portfolio. (Image: Infineon Technologies)
英飞凌科技表示,其 CoolSiC 系列可让工程师开发具有最佳系统成本/性能比的全新产品设计。英飞凌正在大批量生产全面的 1,200-V CoolSiC MOSFET 产品组合。这些器件的额定值为 30 mΩ 至 350 mΩ,采用 TO247-3 和 TO247-4 外壳(图 1)。
STMicroelectronics 表示,其 650 和 1,700 V SiC MOSFET 具有极低的每面积导通电阻 (R DS(on) ) 以及出色的开关性能,从而转化为更高效、更紧凑的系统。MOSFET 是 STPOWER 系列的一部分。
恩智浦为蜂窝基础设施以及工业和国防市场提供 GaN-on-SiC 解决方案。随着蜂窝市场转向更高的频率和功率水平,WBG 技术提供最先进的射频性能来简化 5G 部署。恩智浦 GaN 技术还支持国防和工业行业的高频操作。
随着硅在功率和频率方面达到其应用极限,GaN 和 SiC 技术在电力电子应用中占据主导地位,它们的特性适合对紧凑、轻量、高效率和高密度功率的要求。技术挑战依然存在,特别是在降低成本和总散热方面,就半导体而言,这源于传导和开关损耗。工程师必须处理 SiC 碳化物部分的一些缺陷,并克服氮化镓制造过程中更关键的问题。
审核编辑:刘清
-
半导体
+关注
关注
334文章
26931浏览量
215464 -
电力电子
+关注
关注
29文章
552浏览量
48830 -
功率器件
+关注
关注
41文章
1721浏览量
90285
发布评论请先 登录
相关推荐
评论