0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

探索NX CAE工程仿真——从弹簧系统构建说起

8XCt_sim_ol 来源:仿真知识讲堂 作者:仿真知识讲堂 2022-07-28 10:30 次阅读

导读:CAE初学者往往花大量精力在3D和2D网格划分的练习上,却不愿花时间在1D和0D单元建模的专题学习和强化训练上,造成了在工程中一旦遇到存在弹簧、质量、阻尼器和缓冲器等单元类型的构件和结构时,往往感到措手无策和无从入手,其根本原因在于忽略了CAE学习中的基础单元创建和结构简化建模思路学习的重要性。

下面从一个弹簧建模开始,结合理论计算进行相应的方案仿真和分析,由简到繁逐步过渡到单自由度质量-弹簧-阻尼系统的构建和谐响应响应分析,为后续多自由度质量-弹簧-阻尼建模以及进行更加复杂的瞬态、频率和随机振动等动力学响应分析理清思路和夯实基础。

一、创建弹簧模型及其分析

1、建立弹簧模型和计算要求

一个刚度为10N/mm的一维拉伸弹簧,一端固定,一端承受外力为1Kg,根据理论公式计算其位移最大的变形量为1mm,本文需要对该弹簧进行建模并仿真求解。

2、弹簧模型的构建方法

NX CAE/Simcenter 3D提供了3种构建弹簧模型的方法,方法1首先在建模环境中构建一条直线(本文中定义长度为200mm,方向为ACS/WCS的Z向),在Fem对话框中需要打开并勾选几何体选项中的【直线】选项,进一步进入Fem环境中划分1D网格并依次定义弹簧的刚度参数和方向;方法2直接进入Fem环境构建直线并划分1D网格并依次定义弹簧的刚度大小和方向;方法3(本文采取的操作方法)在建模环境新建主模型(命名为K01)并进入Fem环境中,利用【节点创建】命令中的指定点坐标值功能,依次创建出2个节点,然后利用【单元创建】命令,依次选择单元族类型为【1D】、单元类型为【CELAS1】(或者CELAS2),单击选中上述创建好的2个节点,即可创建出弹簧单元(通过编辑显示,加粗符号、改变颜色和增加文本SP)和在仿真导航器窗口增加了相应的特征树节点1D收集器Celas1 Collector(1)1d_manual_mesh(1),如图1所示。

bc00412a-0e1c-11ed-ba43-dac502259ad0.png

图1 构建的弹簧模型

按照上述弹簧建模方法,可以进一步构建出两个弹簧“串联”和“并联”的模型。

3、定义弹簧模型的参数

单击仿真导航器窗口中的特征树节点【1d_manual_mesh(1)】,通过【网格相关数据】定义该弹簧的A/B端分量均为Z,如图2所示。点击【Celas1 Collector(1)】,编辑并弹出【网格收集器】对话框并点击【编辑】,弹出如图3所示【PELAS】对话框,默认物理属性名称,在属性【平移刚度】中输入10(单位为默认的N/mm),其中属性中【阻尼系数】是指该弹簧的迟滞(结构)阻尼值(物理阻尼),此处不必定义,这样完成了设置弹簧刚度大小的操作。

bc10cb62-0e1c-11ed-ba43-dac502259ad0.png

图2 定义弹簧的方向

bc236024-0e1c-11ed-ba43-dac502259ad0.png

图3 定义弹簧刚度大小

4、建立仿真模型并求解

新建仿真并进入Sim(仿真)环境,求解器为默认的【Simcenter Nastran】、解算类型为默认的【SOL101 线性静态-全局约束】,利用约束类型中的【固定约束】对弹簧的上端节点进行固定,选中载荷类型中的【力】并在其对话框中输入10N、指定受力方向(-Z),求解后进入后处理界面,加载并打开结果文件中的【位移-节点/Z】,即可得到如图4所示的弹簧位移云图,显然解算得到的最大值和理论计算值一致,即为1mm。

bc31a9e0-0e1c-11ed-ba43-dac502259ad0.png

图4 弹簧位移的解算结果

bc3f77dc-0e1c-11ed-ba43-dac502259ad0.png

图5 弹簧-质量模型示意图

二、创建弹簧-质量模型及其分析

1、弹簧-质量模型及其计算要求

如图5所示为一个单自由系统弹簧-质量模型的示意图,上端固定,设定弹簧刚度k为10N/mm,质量M为1Kg,借助理论力学中关于无阻尼单自由度弹簧-质量系统固有频率的计算公式,可以计算其固有角频率(圆频率)ω0为100Hz,固有频率f为15.924Hz(具体的计算过程不再赘述)。本文需要对该弹簧-质量模型进行建模并仿真求解其固有频率。

2、弹簧-质量模型的构建方法

在掌握上述弹簧模型构建方法基础上,在建模环境中新建一个弹簧-质量的主模型(命名为KM_01),并在Fem环境中按照上述操作构建好弹簧模型(符号为SP),再次利用【单元创建】命令,依次选择单元族类型为【0D】、单元类型为【CONM1】(或者CONM2)、单击上述构建好的2个节点,即可创建出0D质量单元,这样在仿真导航器窗口增加了相应的特征树节点0D收集器Concentrated Mass Collector(1)d_manual_mesh(1),通过编辑显示修改颜色并切换标记类型为【填充大正方形】,勾选文本符号(CM)的显示,如图6所示。

bc4f9e6e-0e1c-11ed-ba43-dac502259ad0.png

图6 创建弹簧-质量模型及其特征树节点

3、弹簧-质量模型参数的定义

单击仿真导航器窗口中的【0d_manual_mesh(1)】,右键并通过【网格相关数据】定义该单元属性的质量值([质量33]代表了Z方向)为1Kg,即可完成了定义质量属性的操作。

4、建立仿真模型并求解

新建仿真并进入Sim环境,求解器为默认的【Simcenter Nastran】但将解算类型切换为【SOL103实特征值】,利用约束类型中的【固定约束】对弹簧-质量模型的上端节点进行固定,求解后进入后处理操作界面,加载并打开结果文件Structrual,可以看到【模态1】(单自由度模型只能有1阶振型和1个固有频率值)的大小为15.9155Hz,和理论值15.924Hz非常接近。

三、创建单自由度质量-弹簧-阻尼模型及其分析

1、单自由度质量-弹簧-阻尼模型及其要求

如图7所示为一个单自由系统质量-弹簧-阻尼模型的示意图,上端固定,设定弹簧刚度k为10N/mm,质量M为1Kg,阻尼系数C为63N.S/m(理论阻尼比ξ换算为0.315,无量纲),激励力F=F0*sin(ω*t),其中F0的幅值为2000N,ω为激励角频率,t为0~1s。

通过理论公式可以求解该系统的固有角频率ω0为100Hz,现采用NX前/后处理进行建模并仿真求解其固有频率、阻尼频率以及当ω=ω0时系统谐响应位移X(t)的变化规律。

bc63a3dc-0e1c-11ed-ba43-dac502259ad0.png

图7 质量-弹簧-阻尼模型示意图

bc704592-0e1c-11ed-ba43-dac502259ad0.png

图8 质量-弹簧-阻尼仿真模型

2、质量-弹簧-阻尼模型的构建方法

在掌握上述弹簧-质量模型构建方法基础上(同时定义好各自的属性参数),在建模环境中新建一个质量-弹簧-阻尼的主模型(命名为KMC_01),并在Fem环境中按照上述操作构建好如图6所示的弹簧-弹簧模型,再次利用【单元创建】命令,依次选择单元族类型为【1D】、单元类型为【CDAMP1】(也可以选用CDAMP2、CVISC、CBUSH1D等阻尼形状的单元)、单击上述构建好的2个节点,即可创建出阻尼单元,同时在仿真导航器窗口增加了相应的特征树节点1D收集器Cdamp1 Collector(1)1d_manual_mesh(2),通过编辑显示修改颜色并默认文本符号(DP)的显示,如图8所示。

比较图7和图8可以看出:从实质来看两者是等效的,而从图形角度来看,两者是有区别的,当然可以借助RBE2(1D刚性梁)单元,可以构建出弹簧单元和阻尼单元“并联”的效果(即上端各自一个节点,下端分享质量单元的共同/单个节点)。

3、质量-弹簧-阻尼模型参数的定义

单击仿真导航器窗口中的【1d_manual_mesh(2)】,右键并通过【网格相关数据】定义该单元属性A/B端分量均为Z;单击Cdamp1 Collector(1)右键编辑并弹出【网格收集器】对话框,单击【Cdamp属性】编辑按钮弹出【PDAMP】对话框,在【延伸粘滞阻尼】数字框中输入63,单位为N.S /m,即可完成了定义阻尼单元属性参数的操作。

说明一下,上述定义的阻尼系数为物理阻尼,也称之为名义阻尼(有量纲),但不能直接参与后续模态分析及其动力学响应分析,需要将之转换为粘滞阻尼值(本文换算为0.315,无量纲)

4、建立仿真解算方案(SOL103实特征值)并求解

新建仿真并进入Sim环境,解算方案名称修改为:Solution SOL103实特征值,求解器为默认的【Simcenter Nastran】但将解算类型切换为【SOL103实特征值】,利用约束类型中的【固定约束】对质量-弹簧-阻尼模型的上端节点进行固定,求解后进入后处理界面,加载并打开结果文件Structrual,可以看到【模态1】数据为15.9155Hz(和质量-弹簧模型求解结果一致),和理论值15.924Hz(角频率为100Hz)非常接近。

显然,该解算类型(SOL103实特征值)还不能求解该质量-弹簧-阻尼模型的阻尼频率,需要进入下面的动力学响应解算类型才能求解。

5、建立动力学响应解算方案并求解

(1)单击仿真导航器窗口特征树节点KMC_01_fem1_sim1.sim,右键新建解算过程和响应动力学,弹出【新建响应动力学】对话框并默认解算方案的名称为Response Dynamics 1,确定并查看导航器窗口中特征树节点的变化情况。

(2)同时弹出“将Nastran参数OUGCORD添加到输入板面”等的信息提示,即需要位移的模态坐标系设置为全局坐标系。编辑【Solution SOL103实特征值】模型数据,单击【参数】的【创建建模对象】按钮,在弹出的【解算参数】对话框0-P卡片名称中,找到【OUGCORD】并将其默认值切换为【GLOBAL】,确定即可。

(3)单击窗口特征树节点Reponse Dynamics 1Solution SOL103实特征值Normal Modes[1],右键单击【编辑阻尼系数】并在弹出的对话框【粘滞(阻尼)】中输入31.5(即31.5%),【迟滞(结构阻尼)】默认为0,确定即可。

(4)单击Normal Modes[1](正则模态),右键单击【快速查看】并打开仿真文件视图,即可出现如图9所示的(固有)频率、阻尼频率、质量和刚度等数据,这样就得到了该质量-弹簧-阻尼系统的阻尼(固有)频率为15.11Hz,略小于固有频率15.92Hz(15.9155Hz),关闭仿真文件视图。

bc807732-0e1c-11ed-ba43-dac502259ad0.png

图9 正则模态相关数据

(5)资源条选项中切换为【XY函数导航器】,单击【f(x)数学函数】右键创建弹出对话框,【用途】切换为【响应动力学】,默认函数类型为时间,函数定义名称修改为:data_func01,【轴单位设置】的【X类型】为默认,【Y类型】切换为【力】和单位为【N】,默认【预览区域】中的X向增量为0.01、点数为1024,即这两个参数决定了整个响应的时间大小为10.24s。在公式列表中输入2000*sin(100*time),检查公式的语法并确定,即可在【XY函数导航器】窗口特征树增加了data_func01,可以对此进行绘图输出便于查看该函数是否合理。

(6)单击data_func01,右键导出弹出【导出文件】对话框,默认文件类型为默认的.afu,并定义目标文件,选择电脑的某个目录并命名该函数文件名为F2000并确定。

(7)资源条选项中切换为【仿真导航器】,单击Reponse Dynamics 1右键新建事件,在弹出的对话框中默认类型为【瞬态】,默认名称为Event_1,默认【事件属性】,初始条件切换为【零】,确定即可。

(8)单击窗口新出现的特征树节点Event_1Excitations新建激励平移节点并弹出【新建平移节点激励】对话框,默认名称,选中图形窗口模型上质量所在的节点(必要时单击【回到主页】图标),在激励函数中勾去【X】和【Y】方向选项,单击【Z】条框的箭头符号并单击弹出的【f(x)函数管理器】,在弹出的对话框中选中已经创建的F2000.afu函数,确定即可。

(9)单击Event_1并右键单击【求解模态响应】即可完成了动力学响应计算。

6、质量-弹簧-阻尼结果查看

单击Event_1,右键并单击评估函数响应节点,弹出【计算节点函数响应】对话框,结果类型为默认的【位移】,节点选择模型中质量所在的节点,响应请求的数据分量切换为【Z】,确定后即可在窗口出现位移随时间变化的曲线图,通过【编辑轴】将时间最大值设定为1s,即可出现如图10所示的位移变化曲线图。

bd310bd8-0e1c-11ed-ba43-dac502259ad0.png

图10 位移变化曲线图

四、总结和讨论

(1)在建立上述单自由度质量-弹簧-阻尼模型并求解谐响应基础上,可以改变激励频率、粘滞阻尼(无量纲)和激振力最大幅值等参数,或者改变激励力的函数类型,通过仿真可以得到质量点不同的位移曲线图。

(2)在掌握了单自由度质量-弹簧-阻尼模型构建方法的基础上,可以构建更复杂的两自由度、多自由度质量-弹簧-阻尼模型并进行其他瞬态、频率、随机振动、冲击和响应谱等动力学响应事件并做相应的分析。

另外,说一下本人多年来学习CAE心得和CAE教学的经验:CAE学习方法和学习效果因人、因专业各异,但基础建模的训练和对比学习方法,一定是进入CAE门槛的共性方法和必经之道,建议初学者集中精力通过专题学习(例如本文的质量-弹簧-阻尼建模)达到一定的技能和应用水平。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 仿真
    +关注

    关注

    50

    文章

    4043

    浏览量

    133416
  • 网格
    +关注

    关注

    0

    文章

    139

    浏览量

    16000

原文标题:《NX CAE/Simcenter 3D动力学分析基础入门49讲》

文章出处:【微信号:sim_ol,微信公众号:模拟在线】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    触摸开关弹簧的工作原理是什么

    触摸开关弹簧的工作原理涉及到机械工程、电子工程和材料科学等多个领域。 触摸开关弹簧的工作原理概述 1. 机械结构 触摸开关通常由以下几个部分组成:
    的头像 发表于 09-11 14:58 1873次阅读

    无线时钟弹簧怎么安装

    无线时钟弹簧的安装过程通常涉及一系列精确且细致的步骤,以确保其能够正常工作并安全地集成到车辆系统中。以下是一个基于通用安装指南的步骤说明: 一、前期准备 确认车辆状态 :确保车辆处于安全状态,前轮
    的头像 发表于 09-07 09:11 343次阅读

    莱迪思MachXO5D-NX FPGA的性能

    行业第一颗安全控制FPGA芯片MachXO3D和具备“高端加密功能”的安全控制FPGA Mach-NX,到“增强型安全控制FPGA”MachXO5-NX,再到最新推出的MachXO5D-NX
    的头像 发表于 09-02 09:29 321次阅读

    第20届CAE工程技术年会落幕,积鼎科技见证国产CFD的20年精彩!

    第20届中国CAE仿真工程年会落幕。积鼎科技见证年会的发展历程。
    的头像 发表于 08-27 16:09 250次阅读
    第20届<b class='flag-5'>CAE</b><b class='flag-5'>工程</b>技术年会落幕,积鼎科技见证国产CFD的20年精彩!

    弹簧管压力计的测压原理是什么

    弹簧管压力计是一种常用的压力测量仪器,其测压原理主要基于胡克定律。 弹簧管压力计的构造 弹簧管压力计主要由弹簧管、连接管、指针、刻度盘、外壳等部分组成。
    的头像 发表于 08-07 11:07 1092次阅读

    弹簧管压力表测的是什么压力

    弹簧管压力表是一种常用的压力测量仪器,广泛应用于工业、科研、医疗等领域。它通过测量弹簧管的变形来反映被测压力的大小。 一、弹簧管压力表的工作原理 弹簧管压力表的工作原理基于胡克定律,即
    的头像 发表于 08-07 10:59 828次阅读

    安宝特产品 安宝特3D Evolution:FEM有限元工具,高效优化以用于CAE

    模型,将其流线型化,以进行仿真模拟(CAE)。 与此同时安宝特3D Evolution不需要CAD系统软件即可实现完整读取和写入,覆盖几乎所有的主流CAD格式,如CATIA/NX/J
    的头像 发表于 08-07 10:35 250次阅读
    安宝特产品  安宝特3D Evolution:FEM有限元工具,高效优化以用于<b class='flag-5'>CAE</b>

    RT-Thread Studio构建和重新构建的不同,一般我们编译工程时用哪个?

    想请教在RT-Thread Studio中,构建和重新构建的不同,一般我们编译工程时用哪个,谢谢!
    发表于 07-25 07:38

    EIA-CAE-861 显示标准

    EIA-CAE-861 数字视频显示标准,视频时序显示标准
    发表于 07-03 14:10 0次下载

    继电器中弹簧的作用是什么

    继电器是一种电子控制器件,广泛应用于自动控制系统和远程控制系统中。它主要由线圈、触点、弹簧等部件组成。其中,弹簧在继电器中起着至关重要的作用。本文将详细介绍继电器中
    的头像 发表于 06-21 11:13 774次阅读

    【大语言模型:原理与工程实践】探索《大语言模型原理与工程实践》2.0

    《大语言模型“原理与工程实践”》是关于大语言模型内在机理和应用实践的一次深入探索。作者不仅深入讨论了理论,还提供了丰富的实践案例,帮助读者理解如何将理论知识应用于解决实际问题。书中的案例分析有助于
    发表于 05-07 10:30

    CAE仿真中的芯片物性等效建模方法分析

    的特性、精度和仿真速度有着不同要求。因此,根据需求提供满足一定要求的仿真模型是建模工作的关键。 本文在于研究用 ANSYS icepak/Flotherm建模的时候,主要探讨对芯片等材料属性的选取与设置,以及本体模型如何构建。文
    的头像 发表于 04-28 09:25 1010次阅读
    <b class='flag-5'>CAE</b>热<b class='flag-5'>仿真</b>中的芯片物性等效建模方法分析

    Cadence收购BETA CAE Systems,加速智能系统设计战略

    近日,楷登电子(Cadence)宣布与BETA CAE Systems International AG达成收购协议。BETA CAE作为全球领先的多领域工程仿真解决方案供应商,其卓越
    的头像 发表于 03-08 13:44 668次阅读

    弹簧连接的CAE模拟

    大多数工程结构由许多部件组成,因此,准确地定义组件之间的交互对于准确预测行为至关重要。对于大多数情况,在Ansys Mechanical中分析它们时,我们可以使用接触来建立零件之间的关系。接触元件根据指定的接触行为在零件之间传递力,例如粘合、无分离、摩擦、无摩擦或粗糙。
    的头像 发表于 01-08 11:31 619次阅读
    <b class='flag-5'>弹簧</b>连接的<b class='flag-5'>CAE</b>模拟

    RTL仿真中X态行为的传播—xprop说起

    在使用VCS进行仿真时,工程师们常常会面对一个极为重要且充满挑战的问题——X态传播行为。
    的头像 发表于 12-04 16:20 2269次阅读
    RTL<b class='flag-5'>仿真</b>中X态行为的传播—<b class='flag-5'>从</b>xprop<b class='flag-5'>说起</b>