0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何整合EDA、IP与设计资源,让AI芯片快人一步?

中科院半导体所 来源:半导体行业观察 作者:龚佳佳 2022-07-28 14:33 次阅读

芯片产业在不断竞速,作为AI产业落地重要基底的AI芯片更是如此。在持续火热多年后,如今我国AI芯片产业已经朝着肉搏阶段迈进,谁率先落地产品、构建生态,谁就能在这场竞争中突围。

激烈的市场竞争与迫切的Time to Market,让人们对芯片设计的“好与快”提出了更高要求,在新一轮挑战面前,如何整合EDA、IP与设计资源,让AI芯片快人一步?

相辅相成的EDA

EDA全称Electronic design automation,主要为集成电路的设计、生产等提供自动化辅助设计能力。凭借精细的软件设计,EDA保证了芯片设计各个阶段、各个环节的准确性,缩短了设计周期、降低了设计成本,因此被人称之为半导体工业软件皇冠上的明珠。

然而人工智能的兴起,却将EDA推向了新浪潮。无论是在EDA工具中应用AI算法赋能芯片设计的“AI Inside”,还是EDA工具助力AI芯片高效设计的“AI Outside”,都意味着EDA对于提高AI芯片设计效率有着不可或缺的重要作用。

在“AI Outside”方面,AI芯片随着数据爆炸时代的到来应运而生,庞大的算力意味着其往往具备超大的设计规模,对于芯片来说,规模越大,结构越复杂、精度越高,对于EDA软件的依赖程度也就越高。

以在EDA总体算力比重较大的验证来说,作为解锁芯片流片成败的关键环节之一,要想提高流片成功率,就要在流片之前做好充分的系统级验证。一般来说,芯片验证工作随着SoC芯片复杂度、集成度规模的扩大,占比不断提高,甚至可达70%。面对复杂的设计需求,传统基于电路的仿真技术无法实现对极端情况的验证覆盖,使得验证覆盖率的收敛成为了阻碍AI芯片设计效率进一步提升的“绊脚石”。

为此,AI芯片在验证策略选择上往往需要引入多种验证手段,通过仿真、形式化验证、FPGA原型验证等一系列验证手段提前发现问题,确保芯片在功能、功耗、调度性能等方面达到设计期望。使用EDA工具,可以针对AI的分布式、矩阵式等运算特点,验证AI芯片的性能和收敛能力,推出对应的解决方案,以此来得到更快的结果,提高芯片设计效率。

41953bde-0d95-11ed-ba43-dac502259ad0.jpg

图源:芯华章

这也是EDA的优势所在,无论是人工智能,还是云计算5G、智能汽车,EDA领域均有对应其应用特点的芯片设计解决方案,对于芯片设计者而言,EDA工具可以快速将基础信息进行有效的建模和抽象,帮助设计者将精力更多地投入上层和系统设计。设计者只需完善算法设计,即可通过EDA实现一个性价比更高、性能更匹配的系统设计。

在本土领域,已有多家AI芯片厂商与EDA厂商合作,以此提高设计验证效率。例如:国微思尔芯原型验证工具助力埃瓦科技 3D 视觉 AI 芯片量产;鲲云科技采用芯华章的形式化验证工具穹瀚(GalaxFV),提升新一代复杂AI芯片的设计验证效率,进一步保障复杂AI芯片的功能和可靠性。

而在“AI Inside”方面,EDA+AI更是已经成为了热门话题,不少专家都认为EDA应用AI是必然趋势,AI在其中可以起到加速和辅助作用。

在传统EDA设计工具中,芯片架构探索、设计、验证、布局布线等工作的人力占比巨大,随着人工智能的兴起,EDA设计工具也开始逐渐朝着智能化趋势发展,在深度、强化学习等技术的加持下,智能化EDA设计能够吸收过去的设计经验和数据, 有效减少人力投入、缩短设计周期、提高芯片设计及生产的性能和精度。

从某种意义上来说,芯片设计过程的复杂性非常适合 AI 算法。比如,当AI应用于布局布线、平面规划等芯片后端设计时,EDA工具可以通过摄取设计工具生成的大数据流来探索搜索空间,观察设计如何随时间演变,并调整设计选择、技术参数和工作流程。

又或者,在计算时延中使用AI的方法,可以根据建模精确度把解决方案代入到时延范围内,得到你最终想要的结果。

总的来说,只要AI技术运用得好,可以把后端工具的运行时间缩短。当然,AI还可以在前端设计时,通过建模检测其在后端的运行结果,让前端工程师知道他们现在的优化动作在后端是否有效,能否缩减迭代的速度。

此外,EDA上云作为未来的趋势之一,在云端上可以开放更多的计算资源,也可以加快设计和验证过程。

Chiplet时代,大放异彩的IP

与EDA一样,IP核作为芯片设计中的关键一环,通常是指事先定义,经过验证可以重复使用的、能够完成某些功能的设计模块,可以降低芯片设计中冗余的设计成本,以及错误发生风险,提高设计效率。

在如今AI芯片企业分类中,除了Nvidia、IntelAMD、Qualcomm、华为海思等芯片设计龙头企业,以及以寒武纪、地平线等为代表的专注于人工智能芯片研发企业,还包括了ARMCadence、Synopsys等以IP授权为主要商业模式的企业。

对于AI芯片厂商来说,使用成熟、稳定、满足需求、质量可靠的IP核,通过快速复用积累的技术,可以有效提高芯片设计效率,提升芯片设计公司的交付能力,极大缩短SoC芯片的开发周期。

比如,接口IP的硬化服务能够为 SoC 腾出空间,为达到更高的 AI 性能提供了宝贵的片上 SRAM处理器组件;专业的AI加速硬件IP能够提供在芯片中部署AI加速功能所需的工具;内存IP核解决方案支持针对不同AI内存约束的高效架构,可以减少AI应用中的延迟。

另外,由于IP厂商只设计芯片局部的某些功能模块,因而更能够追求这些功能模块设计的最优化,不断迭代,更新,AI芯片厂商也因此可以借助先进的IP核,在保持竞争力的同时,也可以保障芯片设计的按时交付。

当然还有很重要的一点就是:Chiplet时代的到来。

Chiplet俗称芯粒,也叫小芯片,它是将一类满足特定功能的die(裸片),通过die-to-die内部互联技术实现多个模块芯片与底层基础芯片封装在一起,形成一个系统芯片,以实现一种新形式的IP复用。从这个意义上来说,Chiplet也可以看作一个新的IP重用模式。

41cdf0dc-0d95-11ed-ba43-dac502259ad0.png

图源:信达证券

当前,算力已经成为AI芯片的重要指标之一,只有保证充足的算力,才能应对爆发式增长的计算需求。要想提升AI芯片的算力,增大芯片面积是最为简单有效的方法,然而芯片面积越大意味着良率越低,成本越高。为了解决芯片性能和良率之间的矛盾问题,Chiplet技术出现了。

在Chiplet的加持下,IP 模块经济性和复用性也有望得到大幅提升。不同功能的IP,如 CPU、存储器、模拟接口等,可灵活选择不同的工艺分别进行生产,从而可以灵活平衡计算性能与成本,实现功能模块的最优配置,而不必受限于晶圆厂工艺。

此外,Chiplet还可以看作是硅片级的IP,企业仅需将多个已经成功验证的芯粒通过先进封装技术进行封装,即可得到相应的产品,即高效,也降低了芯片设计的难度和成本。

因此,对于对性能有着高追求、渴望先进工艺的AI芯片来说,IP和Chiplet无疑是其加速的一大利器。

加速中的芯片设计服务

同EDA和IP一样,芯片设计服务作为芯片设计公司和晶圆厂之间的重要桥梁,对于AI芯片厂商来说,也是一个无比重要的存在。

不过与EDA和IP不同的是,IC设计服务提供商的主要作用则是,整合和利用自身的资源集中优势和丰富专业的设计开发能力及经验,为客户争取更具竞争力的IP资源、晶圆制造乃至封装测试等服务支持,有效降低和缩减客户的芯片产品设计开发费用、开发风险和开发周期,降低产品运营费用和风险。

众所周知,AI芯片的开发成本相当高,尤其是ASIC架构设计的芯片,流片数量动则千万,包含人力成本,投入可高达2500万美元以上。而与之相对的却是,越来越多的初创型AI芯片企业。

中商情报网数据显示,近年来,我国AI芯片企业注册量快速增长,由2017年的1110家迅速增长至2021年的13492家,年均复合增长率达86.7%。最新数据显示,2022年1-5月,我国AI芯片企业注册量达6783家,已超过2020年新增企业数量。

4207d7ac-0d95-11ed-ba43-dac502259ad0.png

图源:中商情报网

对于这些资金、人力都短缺的初创型AI芯片企业,只有在有限的时间和资金中做出产品,才能获得下一轮资本的青睐,才不会消失在时间的洪流中。而在此过程中,一家可靠、合适的设计服务供应商便成为了重中之重。

众所周知,芯片设计过程不是单方面一来一回地顺序传递,而是有大量交互与沟通在重叠进行,对于有芯片设计服务相关需求的公司而言,选择设计服务团队,不只是选择一个供应商,更是在选择合作伙伴, 反之亦然。

而追赶在行业风口的AI芯片设计就如同登山,目之所及有限,殊不知前路风景,在披荆斩棘过程中,如果能匹配到合适的芯片设计服务团队,就如同英雄降魔路上有了宝刀利器,可以更快走向最终胜利。

从上世纪80年代后期至今,芯片产业链中已经涌现了一批芯片设计服务厂商,如何在众多设计服务团队中寻找最合适自己的,或许成为了AI初创企业所需面对的新难题。

对于众多处于初创阶段的AI芯片企业来说,有了芯片设计服务商的助力,就可以把宝贵的人力财力更加专注于市场,产品定义以及系统级支撑, 把芯片实现的专业要求交给专业团队实现。不过需要注意的是,在选择芯片设计服务商时,要明白自己的所需、所想,选择与自己最适合、最匹配的,方可事半功倍。

写在最后

随着人工智能场景在金融、制造、电信、医疗、交通等行业应用不断深化,其发展也呈现出应用场景多元化的特征。愈发多元的应用场景,以及逐渐成熟的技术,让AI芯片市场竞争越来越激烈。

“工欲善其事,必先利其器。”

想要成为这个竞争激烈的行业内的捷足先登者,或许学会运用各类工具和设计资源,不失为一种正确的打开方式。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • asic
    +关注

    关注

    34

    文章

    1193

    浏览量

    120324
  • eda
    eda
    +关注

    关注

    71

    文章

    2708

    浏览量

    172876
  • AI芯片
    +关注

    关注

    17

    文章

    1859

    浏览量

    34909

原文标题:芯片竞速,你的AI芯片如何快人一步

文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    2024年EDA/IP十大关键词:除了AI和云化还有什么?

    和模拟设计类工具占整体EDA市场的比例分列前两位,市场份额分别达到65.0%和17.1%。   EDAIP同处于产业上游,起被称为芯片
    的头像 发表于 02-13 10:26 4993次阅读
    2024年<b class='flag-5'>EDA</b>/<b class='flag-5'>IP</b>十大关键词:除了<b class='flag-5'>AI</b>和云化还有什么?

    SiFive发布MX系列高性能AI加速器IP

    AI技术日新月异的今天,RISC-V IP设计领域的领军企业SiFive再次引领行业潮流,正式推出了其革命性的SiFive Intelligence XM系列高性能AI加速器IP。这
    的头像 发表于 09-24 14:46 305次阅读

    异构混训整合不同架构芯片资源,提高算力利用率

    的解决方案。通过混合使用多种异构芯片,可以充分利用不同芯片的优势,提高算力利用率,降低算力成本,并推动AI技术的广泛应用。   异构混训能够整合不同架构
    的头像 发表于 07-18 00:11 3353次阅读

    优刻得与联想AI实验室携手共建高效AI资源

    近日,云计算服务提供商优刻得(UCloud)与联想AI实验室宣布达成战略合作,双方将共同打造个高效且灵活的本地化AI资源池,旨在加速AI
    的头像 发表于 07-14 14:19 1059次阅读

    AI+EDA加速双向赋能,引领万物智能时代的创新

    ,这对芯片设计和EDA工具都提出了更高的需求。 近日,新思科技中国区应用工程执行总监黄宗杰在2024第八届集微半导体大会的【集微EDA IP 工业软件大会】发表了《人工智能加速变革
    发表于 07-09 19:07 506次阅读

    AI芯片设计来势汹汹,EDA巨头营收顺势增长

    电子发烧友网报道(文/周凯扬)随着EDA市场的竞争加剧,越来越多的供应商开始在工具中引入AI/ML,从而帮助芯片制造商和系统供应商区分其产品。去年是AI
    的头像 发表于 06-01 00:57 5391次阅读

    一步解读英伟达 Blackwell 架构、NVlink及GB200 超级芯片

    新的标准。Blackwell架构和GB200 超级芯片有望推动英伟达在人工智能领域更进一步,巩固其在高性能计算和人工智能技术领域的领先地位。随着亚马逊网络服务、谷歌云和微软 Azure 等公司开始整合这些新系统,英伟达创新的影响
    发表于 05-13 17:16

    英伟达宣布收购Run:ai

    英伟达近期宣布收购Run:ai公司,以进一步推动后者的产品路线图并整合资源至Nvidia DGX Cloud。虽然具体的收购金额和完成时间尚未对外公布,但这
    的头像 发表于 05-06 10:34 436次阅读

    risc-v多核芯片AI方面的应用

    得RISC-V多核芯片能够更好地适应AI算法的不同需求,包括深度学习、神经网络等,从而提高芯片的性能和效率,降低成本,使AI边缘计算晶片更具竞争力。 再者,RISC-V的多核设计可以进
    发表于 04-28 09:20

    国内EDA工具AI技术应用现状及发展动态分析

    今年谈EDA工具融入AI已经不会再有人表达惊讶了,毕竟国际EDA巨头们都在持续做宣传。IIC Shanghai活动的不少EDA企业也在谈AI
    发表于 04-12 10:43 822次阅读
    国内<b class='flag-5'>EDA</b>工具<b class='flag-5'>AI</b>技术应用现状及发展动态分析

    安霸发布5nm制程的CV75S系列芯片,进一步拓宽AI SoC产品路线图

    防展(ISC West)期间发布 5nm 制程的 CV75S 系列芯片,进一步拓宽其 AI SoC 产品路线图。
    的头像 发表于 04-09 10:26 1597次阅读

    新思科技携手英伟达:基于加速计算、生成式AI和Omniverse释放下EDA潜能

    。这合作将在集成电路设计、验证、仿真及制造各环节实现最高15倍的效能提升; 将 Synopsys.ai芯片设计生成式AI技术与英伟达 AI
    发表于 03-20 13:43 236次阅读
    新思科技携手英伟达:基于加速计算、生成式<b class='flag-5'>AI</b>和Omniverse释放下<b class='flag-5'>一</b>代<b class='flag-5'>EDA</b>潜能

    MediaTek宣布将进一步深化与海信的长期合作关系

    MediaTek 宣布将进一步深化与海信的长期合作关系。海信率先采用了 MediaTek Pentonic 智能电视芯片,显著提升了流媒体内容的画质表现。自 2024 年起,MediaTek AI 超级分辨率技术(
    的头像 发表于 01-12 09:37 774次阅读

    AI时代,EDA一步的进化方向是什么?

    了刷屏的效果。如今,6年的时间过去了,AI赋能了非常多的行业,那么被誉为“芯片之母”的EDA得到了怎样的赋能?未来又会被如何赋能呢?   AI+EDA的发展现状
    的头像 发表于 12-31 00:14 2986次阅读

    芯和半导体亮相2023集成电路产业EDA/IP交流会

    ,进一步推动集成电路龙头企业发展、厚植产业优势,促进产业链上下游合作交流,提升产业核心竞争力,强化创新、聚焦重点。
    的头像 发表于 12-22 16:38 1054次阅读