0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

原子级沉积可用于扩展摩尔定律及其他

FQPg_cetc45_wet 来源:半导体工艺与设备 作者:半导体工艺与设备 2022-07-30 16:11 次阅读

摩尔定律推动半导体行业继续缩小晶体管的临界尺寸以提高器件密度。

本世纪初,传统的扩容开始遇到瓶颈。业界相继开发出应变Si/Ge、高K/金属栅、Fin-FET,使摩尔定律得以延续。

现在,场效应晶体管的临界尺寸已降至7纳米,即一个芯片上每平方厘米有近70亿个晶体管,这给鳍式结构和纳米制造方法带来了巨大的挑战。到目前为止,极紫外光刻技术已经在一些关键步骤中使用,并且面临着大批量制造的对准精度和高成本问题。同时,新材料和 3D 复杂结构的引入给自上而下的方法带来了严峻的挑战。新开发的自下而上制造是一种很好的补充方法,为纳米制造提供了技术驱动力。早在 1959 年,费曼教授推测,“底部有足够的空间”。这个演讲启发了人类操纵原子或分子作为设计结构的构建块。

原子级沉积是自下而上策略的典型代表。在第一部分中,沉积为垂直方向带来横向埃分辨率以及自上而下的蚀刻,例如双图案化。接下来,各种模板辅助选择性沉积方法,包括介电模板、抑制剂和校正步骤,已被用于 3D 复杂结构的对齐。最后,原子级分辨率可以通过固有的选择性沉积来实现。在本文中,我们讨论了低维材料和新兴应用,包括二维材料、纳米线、纳米粒子等。

原子级沉积方法的特点是薄膜的保形性和均匀性。原子级沉积可以为具有高纵横比的多种结构带来垂直方向的横向分辨率,包括侧壁、纳米线、纳米管等。自对准双图案是垂直分辨率的典型示例。原子级沉积可以提高纳米图案化的精度,获得一些特殊的结构,可以进一步减小特征尺寸,提高晶体管的密度,从而在短期内促进摩尔定律的延续。随着器件变得越来越复杂,薄膜的定向生长被认为是纳米制造过程中的一个重要方面。选择性沉积是实现对准的一种有效且有前途的方法,它可以减少光刻和蚀刻等步骤。通常,使用特殊模板实现高选择性沉积是有效的。借助模板,芯片制造商不仅可以在三个维度上直接叠加晶体管,还可以将传感、储能等多功能集成到芯片中,制造出超级芯片。

通过当前自上而下的方法制备合适的模板用于选择性沉积低维材料和复杂的 3D 结构是非常具有挑战性的,已经研究了非模板选择性沉积。后硅时代,原子级沉积可以制备多种替代纳米材料,如二维材料、碳材料、铁电材料、相变材料等,可以克服硅材料物理极限的限制,拓宽边界摩尔定律。

陈荣(音译)教授和她小组的其他研究人员已经确定了原子级沉积领域的一些关键挑战:

“原子级沉积是一种面向未来的多功能沉积技术,必将在微纳制造领域发挥越来越重要的作用。芯片制造商对这项技术表现出浓厚的兴趣。除了微电子领域,原子级沉积在光电子、储能、催化、生物医学等领域也有广泛的应用。”

“要实现高精度纳米制造,需要深入研究原子级沉积的机理。”

“虽然表征技术正在蓬勃发展,但单原子表征和操纵技术仍有很大的改进空间。”

“为了实现复杂的纳米结构制造,多种材料的多工艺耦合是必不可少的。但是如何实现流程集成呢?”

“除了以高精度制造薄膜和纳米结构外,精度和加工效率也是相互抑制的因素。如何在工业中实现可靠的大批量制造?”

研究人员建议,原子级沉积可用于扩展摩尔定律及其他。原子级沉积正成为一种越来越有前途的技术,用于精确制造复杂的纳米结构,能够创建等效的形貌,更好地控制薄膜厚度,而不会使表面粗糙。它被认为是先进半导体技术节点和其他新兴领域的使能技术。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    335

    文章

    27970

    浏览量

    225146
  • 摩尔定律
    +关注

    关注

    4

    文章

    637

    浏览量

    79348
  • 晶体管
    +关注

    关注

    77

    文章

    9829

    浏览量

    139396

原文标题:原子级沉积,扩展摩尔定律

文章出处:【微信号:cetc45_wet,微信公众号:半导体工艺与设备】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    击碎摩尔定律!英伟达和AMD将一年一款新品,均提及HBM和先进封装

    电子发烧友网报道(文/吴子鹏)摩尔定律是由英特尔创始人之一戈登·摩尔提出的经验规律,描述了集成电路上的晶体管数量和性能随时间的增长趋势。根据摩尔定律,集成电路上可容纳的晶体管数目约每隔18个月便会
    的头像 发表于 06-04 00:06 4197次阅读
    击碎<b class='flag-5'>摩尔定律</b>!英伟达和AMD将一年一款新品,均提及HBM和先进封装

    混合键合中的铜连接:或成摩尔定律救星

    混合键合3D芯片技术将拯救摩尔定律。 为了继续缩小电路尺寸,芯片制造商正在争夺每一纳米的空间。但在未来5年里,一项涉及几百乃至几千纳米的更大尺度的技术可能同样重要。 这项技术被称为“混合键合”,可以
    的头像 发表于 02-09 09:21 217次阅读
    混合键合中的铜连接:或成<b class='flag-5'>摩尔定律</b>救星

    探索物质极限:原子制造的崛起与未来

    一、原子制造的定义 (一)原子制造的基本概念 原子制造(Atomic-levelmanuf
    的头像 发表于 01-20 11:19 272次阅读

    原子沉积(ALD, Atomic Layer Deposition)详解

      本文介绍了什么是原子沉积(ALD, Atomic Layer Deposition)。 1.原理:基于分子层级的逐层沉积 ALD 是一种精确的薄膜沉积技术,其核心原理是利用化学反
    的头像 发表于 01-17 10:53 442次阅读
    <b class='flag-5'>原子</b>层<b class='flag-5'>沉积</b>(ALD, Atomic Layer Deposition)详解

    石墨烯互连技术:延续摩尔定律的新希望

    半导体行业长期秉持的摩尔定律(该定律规定芯片上的晶体管密度大约每两年应翻一番)越来越难以维持。缩小晶体管及其间互连的能力正遭遇一些基本的物理限制。特别是,当铜互连按比例缩小时,其电阻率急剧上升,这会
    的头像 发表于 01-09 11:34 284次阅读

    摩尔定律是什么 影响了我们哪些方面

    摩尔定律是由英特尔公司创始人戈登·摩尔提出的,它揭示了集成电路上可容纳的晶体管数量大约每18-24个月增加一倍的趋势。该定律不仅推动了计算机硬件的快速发展,也对多个领域产生了深远影响。
    的头像 发表于 01-07 18:31 587次阅读

    摩尔定律时代,提升集成芯片系统化能力的有效途径有哪些?

    电子发烧友网报道(文/吴子鹏)当前,终端市场需求呈现多元化、智能化的发展趋势,芯片制造则已经进入后摩尔定律时代,这就导致先进的工艺制程虽仍然是芯片性能提升的重要手段,但效果已经不如从前,先进封装
    的头像 发表于 12-03 00:13 2562次阅读

    聚焦EDA AI和3D IC等创新技术,西门子EDA全面赋能系统创新

    电子发烧友网报道(文/吴子鹏)时至今日,摩尔定律依然在引领全球半导体产业的发展。然而,就连英特尔公司都承认,摩尔定律放缓了。在后摩尔定律时代,由于数据规模暴涨,终端应用对芯片和硬件性能的需求指数
    的头像 发表于 09-25 00:05 3066次阅读
    聚焦EDA AI和3D IC等创新技术,西门子EDA全面赋能系统<b class='flag-5'>级</b>创新

    高算力AI芯片主张“超越摩尔”,Chiplet与先进封装技术迎百家争鸣时代

    电子发烧友网报道(文/吴子鹏)英特尔CEO基辛格此前表示,摩尔定律并没有失效,只是变慢了,节奏周期正在放缓至三年。当然,摩尔定律不仅是周期从18个月变为了3年,且开发先进制程成本高昂,经济效益也变得
    的头像 发表于 09-04 01:16 3569次阅读
    高算力AI芯片主张“超越<b class='flag-5'>摩尔</b>”,Chiplet与先进封装技术迎百家争鸣时代

    “自我实现的预言”摩尔定律,如何继续引领创新

    59年前,1965年4月19日,英特尔公司联合创始人戈登·摩尔(Gordon Moore)应邀在《电子》杂志上发表了一篇四页短文,提出了我们今天熟知的摩尔定律(Moore’s Law)。 就像你为
    的头像 发表于 07-05 15:02 357次阅读

    封装技术会成为摩尔定律的未来吗?

    你可听说过摩尔定律?在半导体这一领域,摩尔定律几乎成了预测未来的神话。这条定律,最早是由英特尔联合创始人戈登·摩尔于1965年提出,简单地说就是这样的:集成电路上可容纳的晶体管数量大约
    的头像 发表于 04-19 13:55 449次阅读
    封装技术会成为<b class='flag-5'>摩尔定律</b>的未来吗?

    为什么使用FPGA?FPGA为什么比GPU的延迟低这么多?

    众所周知,通用处理器(CPU)的摩尔定律已入暮年,而机器学习和 Web 服务的规模却在指数增长。
    的头像 发表于 04-16 16:35 2395次阅读
    为什么使用FPGA?FPGA为什么比GPU的延迟低这么多?

    ​浅析片上网络(NoC)技术的发展及其给高端FPGA带来的优势

    摩尔定律的推动下,集成电路工艺取得了高速发展,单位面积上的晶体管数量不断增加。
    的头像 发表于 04-02 11:46 1649次阅读
    ​浅析片上网络(NoC)技术的发展<b class='flag-5'>及其</b>给高端FPGA带来的优势

    电源解决方案跟摩尔定律有何关系?它如何跟上摩尔定律的步伐?

    根据电源解决方案或与功耗、能源效率或整体能源或碳足迹相关的分析来对任何系统(或系统集合)进行分析时,将源与负载分开出来能帮助整个过程。
    的头像 发表于 03-28 13:50 943次阅读
    电源解决方案跟<b class='flag-5'>摩尔定律</b>有何关系?它如何跟上<b class='flag-5'>摩尔定律</b>的步伐?