0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

手性与自旋—手性甲硫氨酸分子的自旋极化输运和光电流选择性

鸿之微 来源:鸿之微 作者:鸿之微 2022-08-03 15:20 次阅读

摘要:天津大学米文博课题组通过理论计算发现,在手性甲硫氨酸(R,S-MET)分子构成的隧道结内出现了完全自旋极化的光电流,电极的磁化排列可以作为切换自旋通道的开关。在特定的偏振光和电极磁化排列下,R,S-MET分子表现出手性诱导自旋选择性效应。该工作为生命科学和生物电子器件的开发提供了理论基础。

6944bf96-1246-11ed-ba43-dac502259ad0.jpg

有机分子由于其长的自旋弛豫时间,在自旋电子学领域备受关注。由手性有机分子包裹的Fe3O4纳米粒子有效地抑制了水分解过程中副产物H2O2的形成。许多生物分子都具有手性中心,利用聚丙氨酸多肽的自组装单分子膜模拟生物膜实验预见了手性诱导自旋选择性效应在生命过程中的优势,手性与自旋的结合有望提高生物识别的准确性。随着手性诱导自旋选择性效应的提出,手性功能材料的自旋相关电子输运特性受到了广泛关注。研究发现,自旋相关电子输运特性可以由光场和磁场同时操纵。例如,手性寡肽杂化CdSe纳米颗粒的电荷转移可以通过铁磁性衬底的磁化方向来调控,光照可以作为手性分子自旋通道的开关。细菌视紫红质的D96N突变体的自旋过滤能力在光照下显著降低,为生物体内光调控电子自旋极化提供了依据。

综上,手性诱导的自旋选择性效应在推动自旋电子学器件革命的同时,也启发了人们对生命和地球的新一轮探索。核酸、蛋白质和多糖等多数生物大分子都表现出手性特征,在人体内分别倾向于呈现出右手螺旋、左手螺旋和右手螺旋状态。大自然倾向于筛选手性对映体的其中一种参与生命过程,这预示着生命中自旋与手性耦合的独特优势。因此,研究光、自旋、手性与磁场之间的相互作用在理解生命科学和生物电子器件开发等方面具有重要意义。

天津大学米文博教授课题组以R,S-MET分子为例,通过磁性隧道结模型和第一性原理量子输运计算方法研究了手性分子的自旋相关电子输运特,发现隧道磁电阻与自旋注入效率分别与MET分子的手性及偏置电压的大小和方向有关。通过调节光子能量和电极的磁化排列,R-MET分子可以输出不同自旋通道的光电流。当光子能量为4.5 eV时,R-MET分子与S-MET分子表现出相反的自旋输运特性,即在特定的偏振光和电极磁化排列下,R,S-MET分子显示出手性诱导自旋选择性效应。氨基酸的自旋相关输运特性及其在光和磁场下的调控对理解生物手性分子固有的光磁耦合具有重要意义,为生物传感器件的开发提供了理论支持。相关论文在线发表在Advanced Quantum Technologies上。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电极
    +关注

    关注

    5

    文章

    806

    浏览量

    27160
  • 电荷
    +关注

    关注

    1

    文章

    612

    浏览量

    36104

原文标题:文章转载|天津大学米文博课题组QUTE:手性与自旋—手性甲硫氨酸分子的自旋极化输运和光电流选择性

文章出处:【微信号:hzwtech,微信公众号:鸿之微】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    自旋极化:开创半导体器件设计的新路径

    极化。石墨烯作为一种单层碳原子排列而成的二维材料,由于其独特的电子结构和运输性质,已成为自旋电子学研究的热点。 然而,现有的石墨烯在自旋极化方面存在着挑战,主要是由于其缺乏磁性以及无法
    的头像 发表于 11-18 11:16 106次阅读
    <b class='flag-5'>自旋</b><b class='flag-5'>极化</b>:开创半导体器件设计的新路径

    ATA-2022B高压放大器在Lamb波中弹性波自旋调控研究中的应用

    实验名称:Lamb波中弹性波自旋调控的选择性激励实验验证实验内容:利用多通道功率放大器激励一对压电片,产生圆极化振动,并观察Lamb波的传播方向和A/S组分。研究方向:弹性波自旋调控
    的头像 发表于 10-22 15:28 125次阅读
    ATA-2022B高压放大器在Lamb波中弹性波<b class='flag-5'>自旋</b>调控研究中的应用

    TDK成功研发出用于神经形态设备的自旋忆阻器

    TDK公司宣布其已成功研发出一款超低能耗的神经形态元件--自旋忆阻器。通过模拟人脑高效节能的运行模式,该元件可将人工智能(AI)应用的能耗降至传统设备的百分之一。与法国研究机构原子能和替代能源
    的头像 发表于 10-14 11:00 384次阅读

    电流保护的选择性是靠什么来实现的

    电流保护的选择性是指在电力系统中,当发生短路或过载时,保护装置能够按照预定的顺序和时间,优先切断故障部分,而不影响其他正常运行的部分。选择性是电力系统保护设计的重要原则之一,它能够确保系统的稳定性
    的头像 发表于 09-26 14:38 340次阅读

    请问INA105可以对光电流进行放大?

    我想用OPA124搭一个采集光电二极管光电流(几十nA)的放大电路,电路如图示 用INA105接成电压跟随器用作屏蔽驱动。查了一下INA105的数据手册,发现并没有给出INA105的输入偏置电流
    发表于 09-23 08:10

    选择性唤醒如何实现局部联网

    电子发烧友网站提供《选择性唤醒如何实现局部联网.pdf》资料免费下载
    发表于 09-12 10:29 0次下载
    <b class='flag-5'>选择性</b>唤醒如何实现局部联网

    将运放配置成如下电路,后端没有接负载,为什么光电流越大运放消耗的功耗越大?

    将运放配置成如下电路,后端没有接负载,为什么光电流越大运放消耗的功耗越大?
    发表于 08-29 06:10

    互斥锁和自旋锁的实现原理

    互斥锁和自旋锁是操作系统中常用的同步机制,用于控制对共享资源的访问,以避免多个线程或进程同时访问同一资源,从而引发数据不一致或竞争条件等问题。 互斥锁(Mutex) 互斥锁是一种基本的同步机制,用于
    的头像 发表于 07-10 10:07 406次阅读

    自旋锁和互斥锁的使用场景是什么

    自旋锁和互斥锁是两种常见的同步机制,它们在多线程编程中被广泛使用。在本文中,我们将介绍自旋锁和互斥锁的使用场景,以及它们在不同场景下的优势和劣势。 自旋锁的使用场景 自旋锁是一种基于忙
    的头像 发表于 07-10 10:05 896次阅读

    我国科学家实现激光雷达系统研制重大突破,SK海力士计划2028年前投资103万亿韩元押注AI

    传感新品 【东北师范大学:研究一种用于对映选择性识别多巴的多孔有机笼电化学传感器】 手性是自然界和生物体中普遍存在的一种特性,确定手性分子的构型具有重要意义,不仅有助于了解生物体的活动
    的头像 发表于 07-02 08:39 367次阅读
    我国科学家实现激光雷达系统研制重大突破,SK海力士计划2028年前投资103万亿韩元押注AI

    交流二元继电器如何具有相位选择性和频率选择性

    在这篇文章中,我们将详细探讨交流二元继电器的相位选择性和频率选择性。我们将从继电器的基本原理开始,然后探讨这两种选择性的原理和实现方法。 1. 继电器的基本原理 继电器是一种电子开关,它可以根据输入
    的头像 发表于 06-29 09:42 753次阅读

    MM32自旋系列电机专用 24V电机驱动DK板功能介绍

    电子发烧友网站提供《MM32自旋系列电机专用 24V电机驱动DK板功能介绍.pdf》资料免费下载
    发表于 03-24 09:24 2次下载

    混合两种材料创造手性结构的超导体

    科研工作者一直在探究超导材料奇异性能的来源及其对结构调整的影响。近年来的研究焦点在于手性现象。诸多物质均具备手性特征,指的是不能与本身镜像完全重合,这种特性对超导体在强磁场环境下的稳定表现有着重要作用。
    的头像 发表于 02-18 16:43 770次阅读

    使用自旋表启动的平台设备树cpu节点介绍

    补充一下一个使用自旋表作为启动方式的平台设备树cpu节点: arch /arm64/ boot /dts/ xxx.dtsi: cpu@ 0 { device_type = "cpu
    的头像 发表于 12-05 16:19 796次阅读

    “联合甄选,专注科学”系列 新品发布——显微光电流光谱系统

      光电流检测是对光电效应产生的微弱电流进行检测的技术,是光电检测的重要手段,具有精度高、自动化程度高、信息效率高等特点。光电流检测不仅应用
    的头像 发表于 11-30 15:33 318次阅读
    “联合甄选,专注科学”系列 新品发布——显微<b class='flag-5'>光电流</b>光谱系统