0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于生成对抗网络对随机变化进行建模

lhl545545 来源:计算机视觉芯片设计 作者:计算机视觉芯片设 2022-08-14 09:29 次阅读

在这项工作中,我们使用一种新颖的风格特征表示学习方法来解决任意图像风格转移的挑战性问题。作为图像风格化任务中的关键组成部分,合适的风格表示对于获得令人满意的结果至关重要。现有的基于深度神经网络的方法在二阶统计(如内容特征的 Gram 矩阵)的指导下取得了合理的结果。但是,它们没有利用足够的样式信息,这会导致局部失真和样式不一致等伪影。为了解决这些问题,我们建议通过分析多种风格之间的异同并考虑风格分布,直接从图像特征而不是二阶统计中学习风格表示。具体来说,我们提出了对比任意风格迁移(CAST),这是一种通过对比学习的新风格表示学习和风格迁移方法。我们的框架由三个关键组件组成,即用于样式代码编码的多层样式投影仪、用于有效学习样式分布的域增强模块以及用于图像样式迁移的生成网络。我们全面进行定性和定量评估,以证明与通过最先进的方法获得的方法相比,我们的方法取得了明显更好的结果。

延时图像序列为动态过程提供了视觉上引人注目的洞察力,这些过程太慢而无法实时观察。然而,由于随机效应(如天气)以及循环效应(如昼夜循环),将较长的延时序列作为视频播放通常会导致分散注意力的闪烁。我们以一种允许对图像中的整体趋势、循环效应和随机效应进行单独的事后控制的方式引入了解开延时序列的问题,并描述了一种基于数据驱动的生成模型的技术,该技术可以实现这个目标。这使我们能够以单独使用输入图像无法实现的方式“重新渲染”序列。例如,我们可以稳定一个长序列,在可选择的、一致的天气下,在几个月内专注于植物生长。

我们的方法基于生成对抗网络 (GAN),它以延时序列的时间坐标为条件。我们的架构和训练程序的设计使网络学习使用 GAN 的潜在空间对随机变化(例如天气)进行建模,并通过使用具有特定频率的傅立叶特征将调节时间标签馈送到模型来解开整体趋势和循环变化。

我们展示了我们的模型对训练数据中的缺陷具有鲁棒性,使我们能够修正捕捉长延时序列的一些实际困难,例如临时遮挡、帧间距不均匀和帧丢失。

我们展示了Shoot360,一个高效生成多镜头的系统, 给定不同环境下的 360 度视频录制集合,具有所需内容呈现和各种电影风格的普通视图视频。我们系统的核心是一个三步决策过程: 1)首先对内容进行语义分析,基于镜头单元的每个全景环境的兴趣,以及根据用户对内容呈现和电影风格的规范,生成一个指导,指定其输出镜头的语义焦点和运动类型。 2)基于获得的指导,它为每个镜头生成具有镜头级别控制参数的视频候选,用于遵循拍摄规则的视图投影。 3)系统进一步聚合投影的正常视图镜头与施加的局部和全局约束,其中结合了从示例视频和专业拍摄规则中学习的外部知识。广泛的实验验证了我们系统设计的有效性,我们总结了有希望的扩展,以将其应用于更通用的场景。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    7067

    浏览量

    89108
  • 网络
    +关注

    关注

    14

    文章

    7571

    浏览量

    88869
  • 代码
    +关注

    关注

    30

    文章

    4791

    浏览量

    68685

原文标题:2022 siggrqph:图像和视频生成(1)

文章出处:【微信号:计算机视觉芯片设计,微信公众号:计算机视觉芯片设计】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    使用位移基本场方法对空间扩展光源进行建模

    摘要 空间扩展光源在实际中经常出现。 可以使用Tervo等人[J. Opt. Soc. Am. A 27 (9), 2010]报道的位移基本场方法对它们进行建模。 该用例演示了如何基于杨氏干涉实验
    发表于 12-16 10:43

    对信号进行滤波,然后再输入到模数转换器ADC08DL502,为什么信号存在一个大周期T?

    ,可以有0个以上脉冲信号,脉冲信号幅值随机变化,位置随机变化。 一般脉冲形状如下图所示,为近高斯形状,上升时间较短,下降时间较长。 ① 脉冲上升时间:小于5ns,最好可达到1ns ② 脉冲宽度
    发表于 12-16 07:28

    蓝牙AES+RNG如何保障物联网信息安全

    功能可通过软件实现,也可以通过硬件实现。主要优势体现在:在保障通信安全方面,随机生成器能够输出非重复且随机变化的数值。这些数值是构建多种安全机制的基础,例如鉴权与加密过程,从而显著提升蓝牙通信
    发表于 11-08 15:38

    matlab 神经网络 数学建模数值分析

    matlab神经网络 数学建模数值分析 精通的可以讨论下
    发表于 09-18 15:14

    请问LM311能准确的交截生成对应的PWM波形吗?

    UC3825, TLV3501输入正是100k的正弦波 输入负是100kHz的锯齿波 二者交截生成PWM波形 请问LM311能准确的交截生成对应的PWM波形吗 之前使用UC3525里面自带的比较器做的,LM311能达到这样的速度吗
    发表于 08-06 07:46

    生成对抗网络(GANs)的原理与应用案例

    生成对抗网络(Generative Adversarial Networks,GANs)是一种由蒙特利尔大学的Ian Goodfellow等人在2014年提出的深度学习算法。GANs通过构建两个
    的头像 发表于 07-09 11:34 1078次阅读

    cad如何进行三维建模

    三维建模是计算机辅助设计(CAD)中的一项重要技术,它可以帮助设计师在计算机上创建和编辑三维模型。本文将介绍如何使用CAD软件进行三维建模,包括建模的基本步骤、
    的头像 发表于 07-09 10:23 956次阅读

    鸿蒙开发:Universal Keystore Kit密钥管理服务 密钥生成介绍及算法规格

    当业务需要使用HUKS生成随机密钥,并由HUKS进行安全保存时,可以调用HUKS的接口生成密钥。
    的头像 发表于 07-04 21:50 355次阅读
    鸿蒙开发:Universal Keystore Kit密钥管理服务 密钥<b class='flag-5'>生成</b>介绍及算法规格

    如何使用神经网络进行建模和预测

    输入信号,对其进行加权求和,然后通过激活函数进行非线性转换,生成输出信号。通过这种方式,神经网络可以学习输入数据的复杂模式和关系。 神经网络
    的头像 发表于 07-03 10:23 769次阅读

    数学建模神经网络模型的优缺点有哪些

    数学建模神经网络模型是一种基于人工神经网络的数学建模方法,它通过模拟人脑神经元的连接和信息传递机制,对复杂系统进行
    的头像 发表于 07-02 11:36 917次阅读

    神经网络在数学建模中的应用

    数学建模是一种利用数学方法和工具来描述和分析现实世界问题的过程。神经网络是一种模拟人脑神经元结构和功能的计算模型,可以用于解决各种复杂问题。在数学建模中,神经网络可以作为一种有效的工具
    的头像 发表于 07-02 11:29 958次阅读

    神经网络架构有哪些

    、语音识别、自然语言处理等多个领域。本文将对几种主要的神经网络架构进行详细介绍,包括前馈神经网络、循环神经网络、卷积神经网络
    的头像 发表于 07-01 14:16 720次阅读

    如何使用Python生成四位随机数字

    为了实现这些目标,Python 为我们提供了random() 模块。random() 是一个内置的 Python 模块,用于生成随机数。
    的头像 发表于 04-15 12:47 682次阅读

    深度学习生成对抗网络(GAN)全解析

    GANs真正的能力来源于它们遵循的对抗训练模式。生成器的权重是基于判别器的损失所学习到的。因此,生成器被它生成的图像所推动着进行训练,很难知
    发表于 03-29 14:42 4603次阅读
    深度学习<b class='flag-5'>生成对抗</b><b class='flag-5'>网络</b>(GAN)全解析

    生成式人工智能和感知式人工智能的区别

    生成新的内容和信息的人工智能系统。这些系统能够利用已有的数据和知识来生成全新的内容,如图片、音乐、文本等。生成式人工智能通常基于深度学习技术,如生成对抗
    的头像 发表于 02-19 16:43 1783次阅读