0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于可重构计算架构设计的芯片

倩倩 来源:Semi Connect 作者:Semi Connect 2022-08-19 15:10 次阅读

可重构计算芯片(Reconfigurable Computing Chip)是基于可重构计算架构设计的芯片。可重构计算是一种时空二维编程的并行计算模式。与之相对,传统的通用处理器是时域编程的计算模式,FPGA是空域编程的计算模式。可重构计算芯片是集成电路领域的颠覆性技术,具有广泛适用性。

所谓可重构计算是指在配置信息的控制下,利用系统中的可编程计算资源,根据应用的需要构造出最适配的计算架构,达到或接近专用集成电路的高性能。可重构计算的本质是通过多次重新配置可编程计算资源的功能和互连,使系统兼具高性能、低功耗、易维护、低成本等多种优良特性。

可重构计算芯片硬件架构由可重构数据通路(Reconfigurable Datapath,RCD)和可重构控制器(Reconfigurable Controller,RCC)两部分组成,如图5-101所示。其中可重构数据通路负责数据流的并行处理,可重构控制器负责配置信息管理和任务映射调度。在可重构数据通路负责数据流的并行处理,可重构控制器负责配置信息管理和任务映射调度。在可重构计算系统中,数据通路可通过调用或修改配置信息被动态重配,这样既保留了用定制电路(硬件方法)实现计算的性能,又具有用处理器方法(软件方法)实现计算的灵活性。

8d1ac398-1f84-11ed-ba43-dac502259ad0.jpg

可重构计算芯片的配置策略可分为静态重构和动态重构。静态重构只能在可重构计算芯片的数据通路进行计算之前对其进行功能重构。静态重构只能在可重构计算芯片的数据通路进行计算之前对其进行对过大而无法对数据通路进行功能重构。最典型的具有静态重构特征的可重构计算芯片是FPGA。FPGA的常见工作方式是系统上电时从片外存储器中加载配置信息进行功能重构。FPGA配置信息的规模一般很大,重构过程通常会持续几十至几百毫秒甚至多大几秒的时间。等功能重构完成之后,FPGA才能进行相应的计算。

在计算过程中,FPGA的功能无法再被重构。如需重构,一定要首先中断FPGA当前正在进行的计算任务。因为是单比特编程器件(细粒度可重构计算芯片),所以FPGA的灵活性非常高,在不考虑容量的前提下几乎可以实现任何形式的数字逻辑。这也是FPGA能够在商业上获得极大成功的重要原因之一。然而,细粒度给FPGA带来了海量的配置信息,重构的时间代价和功耗代价就变得非常大。而典型的动态可重构芯片的重构时间一般在几纳秒到几十纳秒的范围。

由于功能重构的时间代价相对较小,可重构计算芯片的数据通路在计算过程中也能够进行功能重构的特性被称为动态重构。最典型的具有动态重构特性的可重构计算芯片是粗粒度可重构阵列(Coarse-Grained Reconfigurable Architecture, CGRA)。CGRA的常见工作方式是:在CGRA完成某个既定的计算任务之后,迅速对其加载新的配置比特流进行功能重构。重构过程通常仅会持续几个到几百个时钟周期。等功能重构完成之后,CGRA再继续执行该新配置的计算任务。

可重构计算芯片区别于其他电路实现形式的一大特点就是需要对数据通路进行配置,配置完成后它就像ASIC电路一样以较高的性能实现指定的功能。如图5-102所示,可重构数据通路通过配置加载器从外部加载配置,这部分构成了可重构数据通路的配置部分。缩短可重构数据通路通过配置加载器从外部加载配置,这部分构成了可重构数据通路的配置部分。缩短可重构数据通路的配置时间是十分重要的,这样可以很快地完成不同配置之间的切换,提高电路的实时响应能力。

8f1f1dd8-1f84-11ed-ba43-dac502259ad0.jpg

常用的缩短配置时间的方式有两种:一是提高数据通路的粒度以减少配置信息的总量,配置时间相应减少;二是通过层次化的配置结构减少从数据通路外部输入的配置信息数量,并且实现对配置信息存储在不同的存储器中,而且每一层配置信息中都含有要使用的下一层配置信息的列表,这样逐层地调出配置信息,而不用一次性从外部将大量配置信息全部输入,从而提高了配置速度。此外,由于较高层次的配置信息只含有底层配置信息的列表,底层的配置信息会被不同的列表多次重复使用,从而达到了减少配置信息总量的目的。

可重构数据通路在配置时,层次化的配置结构被一层一层打开,最终每个数据通路单元将得到自己的配置信息并完成配置。数据通路控制模块通过解析配置信息控制每个计算单元的运算、数据的输入/输出、配置信息的加载时间等,从而实现对整个可重构数据通路的调度。

近年来,可重构计算技术已成为集成电路研究的新热点。可重构计算芯片具备硬件随软件变化而变化、软硬件双编程的特点,突破了传统的基于硬件进行软件编程的计算模式,实现了“电路跟随算法变,架构跟随应用变“的高能效动态可重构计算技术。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    458

    文章

    51508

    浏览量

    429357
  • 集成电路
    +关注

    关注

    5400

    文章

    11682

    浏览量

    364446

原文标题:可重构计算芯片

文章出处:【微信号:Semi Connect,微信公众号:Semi Connect】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    相关推荐

    芯片架构设计的关键要素

    芯片架构设计的目标是达到功能、性能、功耗、面积(FPA)的平衡。好的芯片架构能有效提升系统的整体性能,优化功耗,并确保在成本和时间的限制下完成设计任务。
    的头像 发表于 03-01 16:23 172次阅读

    HPC云计算的技术架构

    HPC云计算结合了HPC的强大计算能力和云计算的弹性、扩展性,为用户提供了按需获取高性能计算资源的便利。下面,AI部落小编带您了解HPC云
    的头像 发表于 02-05 14:51 119次阅读

    基于相变材料的重构超构表面用于图像处理

    光学超构表面(metasurface)实现了在亚波长尺度内的模拟计算和图像处理,并具备更低的功耗、更快的速度。虽然人们已经展示了各种图像处理超构表面,但大多数考虑的器件都是静态的,缺乏重构性。然而
    的头像 发表于 11-13 10:24 561次阅读
    基于相变材料的<b class='flag-5'>可</b><b class='flag-5'>重构</b>超构表面用于图像处理

    深入理解 Llama 3 的架构设

    在人工智能领域,对话系统的发展一直是研究的热点之一。随着技术的进步,我们见证了从简单的基于规则的系统到复杂的基于机器学习的模型的转变。Llama 3,作为一个假设的先进对话系统,其架构设计融合了
    的头像 发表于 10-27 14:41 742次阅读

    边缘计算架构设计最佳实践

    边缘计算架构设计最佳实践涉及多个方面,以下是一些关键要素和最佳实践建议: 一、核心组件与架构设计 边缘设备与网关 边缘设备 :包括各种嵌入式设备、传感器、智能手机、智能摄像头等,负责采集原始数据
    的头像 发表于 10-24 14:17 626次阅读

    FPGA芯片架构和资源有深入的理解,精通Verilog HDL、VHDL

    计算机相关专业,具有良好的专业基础知识。 2.工作年限不限,有工作经验或优秀应届毕业生亦可。 3.对FPGA芯片架构和资源有深入的理解,精通Verilog HDL、VHDL编程语言,熟悉时序约束、时序分析
    发表于 09-15 15:23

    AI芯片的混合精度计算与灵活扩展

    、NPU、DSP等。   而无论是哪种架构,如何判断其性能优劣都至关重要,而这就涉及到AI芯片的各项性能指标,如算力、能效、时延等。其中AI芯片的算力精度是衡量其处理数据能力的重要指标之一,它涉及到
    的头像 发表于 08-23 00:08 5268次阅读

    高性能计算中的芯片架构设计探索

    芯片行业非常清楚,对于许多计算密集型应用而言,单芯片解决方案已变得不现实。过去十年的最大问题是,向多芯片解决方案的转变何时才能成为主流。
    的头像 发表于 04-19 11:21 1107次阅读
    高性能<b class='flag-5'>计算</b>中的<b class='flag-5'>芯片</b><b class='flag-5'>架构设</b>计探索

    交换芯片架构设

    交换芯片架构设计是网络设备性能和功能的关键。一个高效的交换芯片架构能够处理大量的数据流量,支持高速数据传输,并提供先进的网络功能。
    的头像 发表于 03-21 16:28 663次阅读

    基于太空级Virtex FPGA建立高灵活性的扩展架构

    AIP架构的最新应用是猎户座载人太空船的视觉处理单元(VPU)。VPU可为处理影像算法提供重构的平台,有利于位姿估计、光学导航以及压缩/ 解压缩。
    发表于 03-21 11:41 429次阅读
    基于太空级Virtex FPGA建立高灵活性的<b class='flag-5'>可</b>扩展<b class='flag-5'>架构</b>

    交换芯片架构设

    交换芯片架构设计是网络通信中的关键环节,它决定了交换机的性能、功能和扩展性。
    的头像 发表于 03-18 14:12 888次阅读

    院士称全球芯片产业格局即将重构

    中国工程院院士邬贺铨在大会上对RISC-V的发展给予了高度评价。他表示,RISC-V正进入应用爆发期,成为芯片指令集架构的第三极,为全球芯片产业格局的重构带来了重大机遇。
    的头像 发表于 03-14 15:41 5819次阅读

    【量子计算重构未来 | 阅读体验】+ 了解量子叠加原理

    机如何生产制造。。。。。。 近来通过阅读《量子计算机—重构未来》一书,结合网络资料,了解了一点点量子叠加知识,分享给大家。 先提一下电子计算机,电子计算机使用二进制表示信息数据,二进制
    发表于 03-13 17:19

    【RISC-V开放架构设计之道|阅读体验】+ 阅读深体验

    本人没有芯片设计,或者指令集方面较深的基础知识,不过认真看这本书也令我学到了不少。 书中一开始便提到RISC-V的目标是称为一款通用的指令集架构:需要适合设计各种规模的处理器,能兼容各种流行的软件栈
    发表于 03-05 22:01

    【量子计算重构未来 | 阅读体验】+ 初识量子计算

    欣喜收到《量子计算机——重构未来》一书,感谢电子发烧友论坛提供了一个让我了解量子计算机的机会! 自己对电子计算机有点了解,但对量子计算机真
    发表于 03-05 17:37