0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于深度学习的玻璃表面检测技术

倩倩 来源:机器视觉沙龙 作者:机器视觉沙龙 2022-08-19 15:31 次阅读

玻璃生产的工业化和规模化后,各种用途和各种性能的玻璃相继问世。现代,玻璃已成为日常生活、生产和科学技术领域的重要材料,被广泛用于建筑、日用、艺术、医疗、化学、电子、仪表、核工程等领域。

随着现代工业自动化技术日趋成熟,越来越多的制造企业考虑如何采用机器视觉来帮助生产线实现检查、测量和自动识别等功能,以提高效率并降低成本,实现生产效益最大化,视觉检测也向玻璃行业的各类产品“发起”挑战。

01 玻璃表面缺陷类型

玻璃在成形时,由于生产材料及生产过程原因引入的,不可避免的在玻璃表面(含内部)出现气泡和结石、黑点、斑点等缺陷。

玻璃上的结石、砂粒因运输过程中振动摩擦,会出现玻璃表面划伤;随着玻璃加工设计的多样化,对玻璃的打孔、挖槽、磨边的情形越来越多,受定位、手法、机器等因素影响,会出现划痕、裂纹、缺损;受环境或操作原因,也会出现油污、水渍及其它脏污等污渍。

17e2579a-1f83-11ed-ba43-dac502259ad0.png

常见的缺陷包括气泡、结石、凹凸、划伤和色斑等。开口泡和结石等缺陷会导致玻璃或组件存在爆片风险,所以这些缺陷的检出尤其重要。

02 传统玻璃检测方法

传统的玻璃检测方法是依靠人眼来判断玻璃表面各种问题,存在很大的局限性:

1.人眼对微小的缺陷不敏感,有误检、漏检风险;

2.人眼无法连续、稳定完成高强度重复性检测工作,会产生疲劳,速度慢、效率低;

3.主观判断受心情、思维、光照等影响,具有很大的不稳定性和非标准性。

目前玻璃的尺寸向着超薄和大尺寸的方向发展,这样就要求生产速度随之提升,给人工检测也带来了很大的困难,此外开口泡和结石此类缺陷尺寸在小于0.5mm时,人工往往很难发现。

人眼检测已无法满足现代企业高速、精确、实时的品检要求,而人工成本不断上涨给企业经营带来压力。

iPhone OEM工厂为例,生产过程中的外观检查耗费30%以上的人力,每年检查人力成本高达48亿元人民币。然而,随着中国平均工资增长率超过10%,低成本劳动力的日子已经一去不复返。

降低人力成本已成为企业最重要、最迫切需要解决的问题。为了减轻昂贵的劳动力负担,机器视觉替代人眼,采用智能图像采集和图像处理技术,检测系统利用视觉处理算法,实现缺陷精确检测,智能分类和分级,已成为一种行业趋势。

03 基于深度学习的玻璃表面检测技术

如何大程度避免漏检

· 采用多通道高速频闪成像技术,1个工位实现多种打光方式。

· 高分辨率成像,超越人眼的观察效果。

如何对缺陷进行分类,可以不同标准检测影响程度不同的缺陷

· 多组光源对玻璃进行分层立体成像。

· 多模式融合/图像特征提取及深度学习算法,有效区分开闭口泡,开口泡,结石,凹凸类缺陷。

针对光伏玻璃等玻璃,怎么样才能更好的适应压延棍差异导致的压花差异

· 复合纹理分析,消除玻璃压花的干扰

· 每秒数据吞吐量接近400MB

可以更方便快捷的进行系统安装和调试

· 模块化组合成像机械结构

· 龙门式多组线扫描结构框架

以透镜缺陷检测为例:

当前有三种尺寸的透镜,分别是直径约为3.4cm的透镜,直径约为3.8cm的透镜,直径约为4.2cm的透镜,分别对这三种尺寸透镜进行检测。

检测效果图中,蓝色代表污渍等有问题的区域(精度为0.39mm);绿色代表透镜缺损部分。检测效率可达3秒/个,误检率低于0.1%。

检测材质也延展至:PS、ABS、PC、PMMA、PE、PO、PVC、PP、PBT、环氧树脂等。

测试1:对直径约为3.4cm的透镜进行检测

(1)源图像

181190c8-1f83-11ed-ba43-dac502259ad0.png

(2) 检测效果图

183aad00-1f83-11ed-ba43-dac502259ad0.png

测试2:对直径约为3.8cm的透镜进行检测

(1) 源图像

1872d1bc-1f83-11ed-ba43-dac502259ad0.png

(2) 检测效果图

189e39f6-1f83-11ed-ba43-dac502259ad0.png

测试3:对直径约为3.8cm的破损透镜进行检测

(1) 源图像

18de2a70-1f83-11ed-ba43-dac502259ad0.png

(2) 检测效果图

190e6212-1f83-11ed-ba43-dac502259ad0.png

04 玻璃产品的AI视觉瑕疵缺陷检测应用

案例展示

手机盖板缺陷检测

盖板玻璃主要应用于触摸屏最外层,产品的主要原材料为超薄平板玻璃,具有防冲击、耐刮花、耐油污、防指纹、增强透光率等功能,目前广泛应用于带触控功能和显示功能的多种电子消费产品。

切割、CNC精雕、研磨、强化、丝印、镀膜、清洗。..。..每一片盖板玻璃的生产过程十分繁杂不易,且为保证成品优质性,每一个环节都涉及到玻璃质量的检测。

193e8474-1f83-11ed-ba43-dac502259ad0.png

那么,如何高效、高质的实现盖板玻璃生产线的实时生产质量管理和过程控制?

高速线阵相机和智能光源相配合后,可对同一片盖板玻璃形成多场多角度高清图像,再由高速图像预处理器对高清图像进行预处理,形成缺陷图像和缺陷特征值,发送到上位机,进行最终的缺陷处理、识别和展示。

1961e324-1f83-11ed-ba43-dac502259ad0.png

检测精度上,玻璃缺陷检测系统可达10um,并拥有1.5s/pcs的检测速度,有效保证企业低误检率与高效率。同时,系统还能为生产质量管理系统提供产线的生产效率、良品率等数据,让企业更快速地改进产线生产工艺,提高产线最终成品率,推进智能化转型升级。

196eb6b2-1f83-11ed-ba43-dac502259ad0.png

手机盖板玻璃外观瑕疵检测对比表

案例展示

汽车玻璃缺陷实时检测

汽车玻璃主要分为三类,包括夹层玻璃,钢化玻璃和区域钢化玻璃。其中,挡风玻璃采用的是夹层玻璃,而作为夹层玻璃的原片必须满足其使用要求,如光学变形、气泡夹杂物、结石等缺陷都需在生产过程进行严格检验。

在线高速扫描每个产品,形成高分辨率的片材图像,进行实时的图像处理,精确捕捉各种表面缺陷,并实现统计、质量分析等处理,企业就可根据终端结果划定每块玻璃的等级,进而分配至不同的应用领域。

案例展示

玻璃瓶缺陷检测

玻璃瓶在食品、药品、饮料等产品包装中得到了广泛的应用。玻璃瓶缺陷检测可以提高检测精度,统一检测标准,消除人工检测的个体差异;降低生产成本、提高产品竞争力;提高检测速度,实现产品全方位实时检测,大幅提高生产效率及生产自动化程度。

检测瑕疵类型主要包括:瓶口破损、缺块、裂缝、瓶口是否存在异物等

适用于圆形、扁形、异型瓶等,分布行业有 食品饮料、药瓶、化妆瓶瓶等,有玻璃瓶、塑胶瓶等,透明瓶、般透明瓶等多种。

1a424770-1f83-11ed-ba43-dac502259ad0.png

在生产线上安装玻璃瓶瓶口缺陷检测系统,玻璃瓶流入视觉检测工位时,通过触发机器视觉传感器拍得玻璃瓶瓶口图片送入系统,系统对所拍图片进行提取分析并和设定的比较得知瓶口是否有缺陷,当检测到玻璃瓶瓶口有缺陷时,系统发出声光报警并发出停机信号

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器视觉
    +关注

    关注

    162

    文章

    4405

    浏览量

    120638
  • 工业化
    +关注

    关注

    0

    文章

    99

    浏览量

    11700

原文标题:机器视觉在【玻璃检测】行业的应用

文章出处:【微信号:机器视觉沙龙,微信公众号:机器视觉沙龙】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    NPU在深度学习中的应用

    随着人工智能技术的飞速发展,深度学习作为其核心驱动力之一,已经在众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门为深度
    的头像 发表于 11-14 15:17 817次阅读

    激光雷达技术的基于深度学习的进步

    信息。这使得激光雷达在自动驾驶、无人机、机器人等领域具有广泛的应用前景。 二、深度学习技术的发展 深度学习是机器
    的头像 发表于 10-27 10:57 498次阅读

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习是AI大模型的基础 技术支撑 :
    的头像 发表于 10-23 15:25 1162次阅读

    FPGA做深度学习能走多远?

    ,共同进步。 欢迎加入FPGA技术微信交流群14群! 交流问题(一) Q:FPGA做深度学习能走多远?现在用FPGA做深度学习加速成为一个热
    发表于 09-27 20:53

    玻璃电路板表面微蚀刻工艺

    玻璃表面蚀刻纹路由于5G时代玻璃手机后盖流行成为趋势,预测大部分中高端机型将采用玻璃作为手机的后盖板。因此,基于玻璃材质的微加工工艺也就成为
    的头像 发表于 07-17 14:50 668次阅读
    <b class='flag-5'>玻璃</b>电路板<b class='flag-5'>表面</b>微蚀刻工艺

    FSM-6000XTR玻璃表⾯应⼒计规格书

     全自动无损玻璃表面应力检测仪FSM-6000XTR是检测玻璃表面应力值测定
    发表于 07-12 11:52 0次下载

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个领域。随着深度
    的头像 发表于 07-09 15:54 1133次阅读

    深度学习在工业机器视觉检测中的应用

    随着深度学习技术的快速发展,其在工业机器视觉检测中的应用日益广泛,并展现出巨大的潜力。工业机器视觉检测是工业自动化领域的重要组成部分,通过图
    的头像 发表于 07-08 10:40 1186次阅读

    基于深度学习的无人机检测与识别技术

    随着无人机技术的快速发展,无人机在军事、民用、商业等多个领域的应用日益广泛。然而,无人机的广泛使用也带来了诸多挑战,如空域安全、隐私保护等问题。因此,开发高效、准确的无人机检测与识别技术显得尤为重要。本文将深入探讨基于
    的头像 发表于 07-08 10:32 1419次阅读

    基于AI深度学习的缺陷检测系统

    在工业生产中,缺陷检测是确保产品质量的关键环节。传统的人工检测方法不仅效率低下,且易受人为因素影响,导致误检和漏检问题频发。随着人工智能技术的飞速发展,特别是深度
    的头像 发表于 07-08 10:30 1650次阅读

    深度学习在视觉检测中的应用

    能力,还使得机器能够模仿人类的某些智能行为,如识别文字、图像和声音等。深度学习的引入,极大地推动了人工智能技术的发展,特别是在图像识别、自然语言处理、语音识别等领域取得了显著成果。
    的头像 发表于 07-08 10:27 864次阅读

    基于深度学习的小目标检测

    在计算机视觉领域,目标检测一直是研究的热点和难点之一。特别是在小目标检测方面,由于小目标在图像中所占比例小、特征不明显,使得检测难度显著增加。随着深度
    的头像 发表于 07-04 17:25 1040次阅读

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入
    发表于 04-23 17:18 1374次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的语义SLAM

    深度学习检测小目标常用方法

    深度学习的效果在某种意义上是靠大量数据喂出来的,小目标检测的性能同样也可以通过增加训练集中小目标样本的种类和数量来提升。
    发表于 03-18 09:57 809次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>检测</b>小目标常用方法

    基于深度学习的芯片缺陷检测梳理分析

    虽然表面缺陷检测技术已经不断从学术研究走向成熟的工业应用,但是依然有一些需要解决的问题。基于以上分析可以发现,由于芯片表面缺陷的独特性质,通用目标
    发表于 02-25 14:30 1682次阅读
    基于<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的芯片缺陷<b class='flag-5'>检测</b>梳理分析