0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

微流控芯片不同基体材料生物相容性对比

MEMS 来源:麦姆斯咨询 作者:麦姆斯咨询 2022-08-19 15:56 次阅读

现阶段微流控芯片在生命科学、医药卫生和环境领域的应用日益广泛,鉴于所使用的微流控芯片基体材料的生物相容性可能会对芯片内生物医学检测过程产生重要影响,因而很有必要对微流控芯片基体材料的生物相容性及其改善方法进行分析和研究。

据麦姆斯咨询报道,基于此,来自北京化工大学和新疆科技学院的研究人员于《微纳电子技术》期刊发表论文,对各种基体材料的微流控芯片的生物相容性进行了讨论,并对改善微流控芯片生物相容性的方法进行了总结。

微流控芯片不同基体材料生物相容性对比

如下表所示,研究人员对不同种类微流控芯片基体材料的生物相容性研究结果进行了对比。

表1 不同基体材料的微流控芯片的生物相容性

1b018c30-1f82-11ed-ba43-dac502259ad0.png

具体来说,硅胶类聚合物材料弹性好,基于软光刻方法制备的微流控芯片键合工艺简单、流道完整、化学稳定性高,并且模具可以重复利用。硅胶类聚合物材料中PDMS和NOA81的生物相容性比较好,而PUMA和OSTE的生物相容性则相对欠佳。有研究人员提出了一种以PDMS为基体的微流控芯片,图1(a)为该微流控芯片的整体示意图,图1(b)为微流控芯片中的单个培养单元,左右两侧分别是培养基的入口和出口,上下通道的作用是加载细胞和排出废料,人癌(HeLa)细胞在此芯片中存活了14天之久。

1b28b99a-1f82-11ed-ba43-dac502259ad0.png

图1 PDMS基体的微流控芯片整体示意图及其单个培养单元

热塑性聚合物材料机械性能优异,基于激光烧蚀技术制备的微流控芯片的成本低、制作周期短,且生物相容性较高。近几年出现的新兴材料TPE或sTPE的生物相容性优良,并且兼具热塑性聚合物材料和弹性体聚合物材料的优点。

3D打印技术中的熔融沉积快速成型技术常用的ABS和PLA的生物相容性好,而光固化成型技术常用的光敏树脂类材料生物相容性大都欠佳。其他常用材料如玻璃和纸的生物相容性很好,尤其是纸基微流控芯片在生物医学检测方面的应用已经较为广泛。

陶瓷的生物相容性受其材料配比的影响而不尽相同,但大部分陶瓷的生物相容性欠佳。有研究人员制备了3种硼硅酸盐玻璃陶瓷LTCC衬底材料,即Ca-B-Si-O(CBS)、Ca-Al-B-Si-O(CABS)和Ca-Mg-B-Si-O(CMBS),并通过实验对3种不同的陶瓷材料的生物相容性进行了评估。结果如图2(a)所示,CMBS样品的浸出液中发现大量死亡细胞,其他两种几乎看不到;然后通过直接培养细胞法培养细胞,图2(b)所示的结果表明细胞良好地粘附在纤维连接蛋白包覆的CABS样品表面,观察到其中有少量死亡细胞,然而,细胞很少粘附在CBS和CMBS样品表面,并观察到大量的死亡细胞。

1b4a8e44-1f82-11ed-ba43-dac502259ad0.png

图2 不同方法培养细胞的荧光图像

微流控芯片生物相容性的提高方法

(1)表面修饰或材料改性

微流控芯片的生物相容性没有达到理想状态时可以通过改变材料的组成或者在微通道内壁表面修饰一层理想的具有生物相容性的涂层来改善芯片的生物相容性。有研究人员通过氩(Ar)或氮(N)等离子体处理,在以PUMA和OSE-80聚合物为基质的微流控芯片表面引入极性高且有利于细胞附着和生长的修饰物,图3为未处理及等离子体处理的PUMA和OSTE聚合物上分别孵育24和72h后HUVEC的代表性免疫荧光图像,此方法成功地使HUVEC在PUMA上更好地粘附和增殖,提高了芯片表面的生物相容性。

1b785842-1f82-11ed-ba43-dac502259ad0.png

图3 Ar或N等离子体处理不同时间HUVEC细胞生长的代表性免疫荧光图像

(2)表面形貌及粗糙度

材料表面的粗糙度会对细胞附着和表面浸润性有一定的影响,这势必会对其生物相容性产生一定的影响。一般来说,增大材料表面粗糙度可以增加其生物相容性。

总体来说,现阶段提高生物相容性方法的适用范围和使用效果还很有限,未来可以探索从表面修饰的新材料、新方法入手提升微流控芯片内表面的生物相容性及表面修饰的耐久性。

论文链接:

http://dx.doi.org/10.13250/j.cnki.wndz.2022.07.003

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    455

    文章

    50714

    浏览量

    423139
  • 微流控
    +关注

    关注

    16

    文章

    525

    浏览量

    18885

原文标题:微流控芯片生物相容性的研究进展

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    玻璃芯片的特点

    得它们非常适合于需要光学观察和分析的应用,如荧光显微镜观察、激光诱导荧光(LIF)检测等。 2. 优异的耐高压 玻璃芯片能够承受较高的压力,这使得它们适用于需要高压操作的实验,
    的头像 发表于 12-13 15:26 102次阅读

    控技术的生物学应用

    控技术为在推动生物学众多领域的强大工具做出了巨大贡献。随着用于通道中流体的注射、混合、泵送和存储的新器件和工艺的发展,近年来
    的头像 发表于 12-01 21:50 128次阅读

    常用的芯片类型

    芯片是一种集成了多种尺度功能单元的微型设备,它能够在微米级别上精确操控流体,广泛应用于生物医学、化学分析、
    的头像 发表于 11-21 15:13 348次阅读

    高通量生物分析技术之芯片

    高通量生物分析技术是指同时对一个样品中的多个指标或者对多个样品中的一个指标同步进行并行分析,以在最短的时间内获得最多的生物信息的新型分析技术。
    的头像 发表于 11-14 15:50 174次阅读

    一种可以提升动态血糖监测均匀和精确度的导电油墨

    水平的实时跟踪,为医护人员提供了宝贵的数据支持,帮助他们制定个性化的治疗方案。但是,为了确保CGM系统的准确和可靠,传感器的导电材料必须具备高导电、良好的
    发表于 11-08 10:26

    S型芯片的优势

    芯片的基本概念 芯片,也被称为芯片实验室
    的头像 发表于 11-01 14:30 254次阅读

    控阵列芯片和普通芯片的区别

    生物化学研究,而普通芯片则广泛应用于电子设备中。 设计原理与结构 控阵列芯片:设计重点在于微米级通道和腔室,用于精确操控流体,实现多种
    的头像 发表于 10-30 15:10 190次阅读

    PDMS芯片和PMMA芯片的区别

    PDMS(聚二甲基硅氧烷)和PMMA(聚甲基丙烯酸甲酯,又称丙烯酸或有机玻璃)是两种常见的芯片材料,它们各自有不同的特性和应用场景。 材料
    的头像 发表于 09-25 16:03 396次阅读

    COC/COP芯片开发与应用

    多种功能的全分析系统,具有微型化、集成化、分析速度快、试剂消耗少等显著优点。 COC (环烯烃共聚物) 芯片是一种使用COC材料制成
    的头像 发表于 09-24 14:52 267次阅读

    芯片3大制作技术

    ,同时保持反应体系的封闭,减少污染,等等。流体作为控技术操控的对象,可以广泛涵盖血液,尿液,唾液等各种生物样本,因此在体外诊断(IV
    的头像 发表于 08-29 14:44 423次阅读

    玻璃芯片前景分析

    们设计为允许在芯片内发生各种化学和生物反应。 芯片可用于化学合成、药物发现、DNA 分析和即时诊断等广泛应用。 玻璃因其光学透明
    的头像 发表于 07-21 15:05 480次阅读
    玻璃<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>前景分析

    综述:基于控技术的氧释放生物材料的制备与应用研究进展

    近期,中国科学技术大学朱志强副教授等在Acta Biomaterialia期刊上发表了题为“Microfluidic strategies for engineering oxygen-releasing biomaterials”的综述论文,全面介绍了基于
    的头像 发表于 04-13 11:31 1338次阅读
    综述:基于<b class='flag-5'>微</b><b class='flag-5'>流</b>控技术的氧释放<b class='flag-5'>生物</b><b class='flag-5'>材料</b>的制备与应用研究进展

    芯片技术的特点 芯片生物芯片的区别

    比如对于控免疫分析芯片系统,抗体的固定、对通道表面的封闭,显著影响免疫分析的灵敏度,是该类芯片需要重点解决的问题。
    的头像 发表于 03-15 10:36 2808次阅读
    <b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>技术的特点 <b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>与<b class='flag-5'>生物芯片</b>的区别

    浅谈芯片技术

    控技术(Micronuidics),或称为芯片实验室(1ab.on.a.chip),是把生物、化学等领域中样品的制备、反应、分离、检测等基本操作集成在一块
    的头像 发表于 03-01 09:13 4732次阅读
    浅谈<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>技术

    优可测推动控技术革新,精准助力生物医学等行业的发展

    芯片凭借着集成小型化与自动化、污染少、样本量少、检测试剂消耗少、高通量等特点,在生物医学、化学、材料科学等领域具有广泛的应用前景,其中
    的头像 发表于 01-19 08:32 614次阅读
    优可测推动<b class='flag-5'>微</b><b class='flag-5'>流</b>控技术革新,精准助力<b class='flag-5'>生物</b>医学等行业的发展