0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

具有深度学习能力的传感器融合

suanjunihao 来源:suanjunihao 作者:suanjunihao 2022-08-23 16:52 次阅读

具有深度学习能力的传感器融合

【导读】传感器被越来越多地应用于我们的日常生活中,以帮助收集各种应用中有意义的数据,例如建筑暖通空调系统、工业自动化、医疗保健、门禁控制和安全系统等。传感器融合网络有助于从多个传感器获取数据,以提供设备周围环境更全面的感知。换句话说,传感器融合结合多个物理传感器的数据,即使单独的传感器本身不可靠,融合后的结果会更加准确,有助于减少感知过程中的不确定性。

为了进一步提高智能化和可靠性,使用深度学习进行传感器融合,在工业和消费领域正变得越来越重要。

从数据科学的角度来看,这种模式通过采用智能监测和传感器融合策略,以及运用优化的机器学习,从传感器数据中中获取相关知识。主要目标之一是有效预测工业运行环境中的异常行为,以避免重大事故带来的损害。

瑞萨电子提供智能端点传感设备和集成了丰富模拟外设的微控制器。这些微控制器作为传感设备的核心,为不同应用提供更精确的传感器融合方案。常用的方式是:

冗余传感器:提供相同的信息类型。

互补传感器:提供独立(不相干)的信息类型。

协同传感器:顺序收集外部的信息。

poYBAGMElVuAFHanAACV1vgEVEg748.jpg

传感器网络中的通信是整个方案的核心,有以下几种选择:

分散式:传感器节点之间没有通信。

集中式:所有传感器把测量值提供给中央节点。

分布式:节点之间按照一定的频率交换信息(例如,每采集五次就交换一次数据)。

集中式方案也可以被看作是分布式方案的一个特例。传感器的每一次采集都会发送给融合节点,如下图示。

pYYBAGMElVuAalHcAABFfnJmNlI076.jpg

深度学习

一个有效的传感器融合方案,先决条件是精确校准和同步传感器。瑞萨提供了一系列解决方案,使用集中式方案,在端点设备上运行先进的传感器融合算法,实现决策推断。

晚期融合可以实现互操作,而早期融合可以为人工智能提供丰富的数据做预测。我们借用不同策略的长处。现代方法通常会对设备上的传感器,在时间和空间上做融合,然后将融合后的数据输入神经网络执行预测。这些数据用于AI训练或实时算法的软件闭环(SIL)测试。由于前期的数据融合,在此阶段这些算法只需要接收有限的信息量。

深度学习使用神经网络来实现先进的机器学习,可以利用高性能计算平台,如瑞萨的RA MCU和RZ MPU来做训练和执行。深度神经网络由若干处理层组成,这些处理层从传感器融合中学习,对数据进行不同程度的抽象化。深度神经网络的层数越多,学到的表征就越抽象。

深度学习提供了一种表征学习的形式,通过使用简单的表征来表示数据。深度学习技术可以使用几个层的组合来理解特征,每个层都有独特的数学转换,以产生抽象的表征,更好地区分数据中的高级特征,以加强对真实形式的分离和理解。

多流神经网络的优势在于从多模态数据中生成有效的预测,其中每个流对网络产生整体联合推断都很重要。多流方法已在多模态数据融合方面取得成功,深度神经网络已被成功应用于多个应用中,如机器翻译和时序数据融合。

允许深度神经网络在基于MCU的端点应用上进行训练和部署,是一个巨大的突破,有助于加快行业应用。瑞萨的RA MCU平台和相关的灵活软件包与人工智能建模工具相结合,提供了多层结构化神经网络应用能力。通常,更多的层能让网络学到更多的抽象特征。在异质混合中堆叠多种类型的层,可以胜过同质混合的层。瑞萨的传感解决方案可以通过多个传感器的反馈来弥补系统在处理相关类型的信息时单个传感器的不足。

灵活的瑞萨高级(RA)微控制器(MCU)是业界领先的32位MCU,是构建智能传感器的绝佳选择。由于RA系列的MCU种类繁多,您可以根据您的应用需求选择最佳产品。RA MCU平台与强大的支持和软件生态系统相结合,将有助于加快传感器融合和深度学习模块的工业4.0应用开发。

作为瑞萨广泛的解决方案和设计支持的一部分,瑞萨为多功能人工智能物联网(AIoT)传感器解决方案提供了参考设计。它针对工业预测维护、支持手势识别的智能家居/物联网设备、可穿戴设备(主动跟踪)以及创新性的人机界面或(HMI)(手指感知)等移动应用提供了解决方案。作为该解决方案的一部分,瑞萨可以提供丰富的硬件,包括物联网专用RA微控制器、空气质量传感器、光传感器、温度和湿度传感器、6轴加速度传感器以及蜂窝、蓝牙通信芯片等。

poYBAGMElVuAUhpiAAB3a53KiVo010.png

随着工业4.0系统中传感器数量的不断增加,对传感器融合的需求也在不断增长,以理解这些传感器产生的海量数据。市面上也出现越来越多集成传感器融合的设备。例如,融合了振动、声音、温度和磁场传感器数据的智能状态监测盒可用于机器状态监测。还可以选配用于监测加速度、角速度、冲击和振动的其他传感器配件。

该系统通过人工智能算法实现传感器融合,以更好地对异常运行状况进行分类,从而产生更准确的推断决策。这种边缘人工智能架构简化了对传感器融合所产生的大数据的处理,确保只有最相关的数据被发送到边缘人工智能处理器或云端,以便进一步分析并可能用于训练ML算法。

使用基于AI的深度学习有几个好处

● AI算法可以采用传感器融合,利用多个传感器的数据来弥补单个传感器数据的不足。

● AI算法可以先根据传感器数据的相关性对传感器分类,再把数据送给与之对应的任务。

● 通过在边缘设备或云上的持续训练,AI/ML算法可以让设备通过不断学习来识别以前未识别的系统行为变化。

● AI算法可以预测可能的故障源,实现预测性维护,提高生产效率。

传感器融合与人工智能深度学习相结合,可以发挥传感器数据的最大作用。基于AI/ML的增强型传感器融合可用于系统的多个层级,包括数据层、融合层和决策层。传感器融合的基本功能包括实现数据的平滑和过滤以及预测传感器和系统状态。

瑞萨电子邀请您使用我们的高性能MCU和A&P产品组合。结合完整的软件平台,它能为您提供有针对性的深度学习模型和工具,用以构建下一代传感器融合解决方案。

来源:瑞萨电子,作者:Suad Jusuf

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2550

    文章

    50992

    浏览量

    752948
  • 人工智能
    +关注

    关注

    1791

    文章

    47137

    浏览量

    238113
  • 深度学习
    +关注

    关注

    73

    文章

    5497

    浏览量

    121094
收藏 人收藏

    评论

    相关推荐

    工业温度传感器的优缺点 温度传感器在智能家居中的应用

    ,因此它们具有很高的耐用性和抗干扰能力。 稳定性 :工业温度传感器在长时间运行中能够保持稳定的性能,这对于连续监测温度变化的工业应用非常重要。 广泛的测量范围 :工业温度传感器能够覆盖
    的头像 发表于 11-22 09:30 252次阅读

    NPU在深度学习中的应用

    设计的硬件加速,它在深度学习中的应用日益广泛。 1. NPU的基本概念 NPU是一种专门针对深度学习算法优化的处理
    的头像 发表于 11-14 15:17 473次阅读

    深度学习GPU加速效果如何

    图形处理(GPU)凭借其强大的并行计算能力,成为加速深度学习任务的理想选择。
    的头像 发表于 10-17 10:07 178次阅读

    图像传感器的探测能力与哪些因素有关

    图像传感器的探测能力与相关因素 图像传感器是现代电子成像系统中的核心部件,它能够将光信号转换为电信号,进而生成数字图像。随着科技的不断进步,图像传感器的应用领域越来越广泛,从智能手机、
    的头像 发表于 10-12 10:50 413次阅读

    FPGA做深度学习能走多远?

    并行计算的能力,可以在硬件层面并行处理大量数据。这种并行处理能力使得 FPGA 在执行深度学习算法时速度远超传统处理,能够提供更低的延迟和
    发表于 09-27 20:53

    精密制造的革新:光谱共焦传感器与工业视觉相机的融合

    在现代精密制造领域,对微小尺寸、高精度产品的检测需求日益迫切。光谱共焦传感器凭借其非接触、高精度测量特性脱颖而出,而工业视觉相机则以其高分辨率、实时成像能力著称。两者的融合,不仅解决了传统检测方式在
    的头像 发表于 09-26 11:47 321次阅读

    磁通门电流传感器过载能力如何

    磁通门电流传感器是一种利用磁通门效应测量电流的传感器。它具有高精度、高稳定性、高线性度、抗干扰能力强等优点,在工业自动化、电力系统、新能源等领域得到了广泛应用。 磁通门电流
    的头像 发表于 08-19 09:27 438次阅读

    传感器融合如何使 AMR 在工厂车间内高效移动

    依赖单一传感器技术。 多传感器融合,或简称“传感器融合”,将激光测距 (LIDAR)、摄像头、超声波传感
    的头像 发表于 05-05 09:34 800次阅读
    <b class='flag-5'>传感器</b><b class='flag-5'>融合</b>如何使 AMR 在工厂车间内高效移动

    未来已来,多传感器融合感知是自动驾驶破局的关键

    驾驶的关键的是具备人类的感知能力,多传感器融合感知正是自动驾驶破局的关键。昱感微的雷视一体多传感器融合方案就好像一双比人眼更敏锐的眼睛,可以
    发表于 04-11 10:26

    传感器融合的工作原理

    你怎么知道你在哪里?什么是真实的?这是传感器融合应该回答的问题。不是以哲学的方式,而是字面上的“我会自动撞入白宫吗?因为我被告知不要这样做”,这种方式内置于商业四轴飞行的固件中。
    发表于 04-04 13:11 631次阅读

    Cadence扩充Tensilica IP产品阵容,强化汽车传感器融合计算能力

    全球电子设计自动化和半导体IP解决方案的领先企业楷登电子(Cadence)近日宣布,其进一步扩展了Tensilica IP产品系列,以满足汽车行业中日益增长的传感器融合应用计算需求。新推出
    的头像 发表于 03-14 11:38 863次阅读

    图像传感器关键参数深度解析

    有效像素总数隶属于像素总数集合。有效像素数目直接决定了CMOS图像传感器的分辨能力
    发表于 03-11 11:45 1646次阅读
    图像<b class='flag-5'>传感器</b>关键参数<b class='flag-5'>深度</b>解析

    为什么深度学习的效果更好?

    ,这些原则和进步协同作用使这些模型异常强大。本文探讨了深度学习成功背后的核心原因,包括其学习层次表示的能力、大型数据集的影响、计算能力的进步
    的头像 发表于 03-09 08:26 614次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?

    深度解析:多传感器融合SLAM技术全景剖析

    SLAM中,先验值通常从一系列传感器获得,比如惯性测量单元(IMU)和编码,而观测值则是通过GPS、相机和激光雷达等其他传感器获取的,后验值是融合了先验信息与观测数据之后得到的结果,
    发表于 02-23 11:31 2940次阅读
    <b class='flag-5'>深度</b>解析:多<b class='flag-5'>传感器</b><b class='flag-5'>融合</b>SLAM技术全景剖析

    整合传感器深度学习的“电子舌”系统

    该味觉系统有效整合了传感器深度学习技术,能够同时准确地检测咸度、酸味、苦味和甜味,有望应用于食品、酒业、化妆品和制药等多个行业。
    的头像 发表于 01-03 17:19 874次阅读
    整合<b class='flag-5'>传感器</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的“电子舌”系统