0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于全景分割的全场景图生成任务

OpenCV学堂 来源:新智元 作者:新智元 2022-08-24 10:33 次阅读

【导读】本文提出基于全景分割的全场景图生成(panoptic scene graph generation,即PSG)任务。相比于传统基于检测框的场景图生成,PSG任务要求全面地输出图像中的所有关系(包括物体与物体间关系,物体与背景间关系,背景与背景间关系),并用准确的分割块来定位物体。PSG任务旨在推动计算机视觉模型对场景最全面的理解和感知,用全面的识别结果更好地支撑场景描述、视觉推理等下游任务。同时PSG数据集提供的关系标注和全景分割也为解决当前图像生成领域对关系不敏感的问题创造了新的机遇。

现在已经2022年了,但是当下大多数的计算机视觉任务却仍然只关注于图像感知。比如说,图像分类任务只需要模型识别图像中的物体物体类别。

虽然目标检测,图像分割等任务进一步要求找到物体的位置,然而,此类任务仍然不足以说明模型获得了对场景全面深入的理解。

以下图1为例,如果计算机视觉模型只检测到图片中的人、大象、栅栏、树木等,我们通常不会认为模型已经理解了图片,而该模型也无法根据理解做出更高级的决策,例如发出「禁止投喂」的警告。

事实上,在智慧城市、自动驾驶智能制造等许多现实世界的AI场景中,除了对场景中的目标进行定位外,我们通常还期待模型对图像中各个主体之间的关系进行推理和预测。

例如,在自动驾驶应用中,自动车需要分析路边的行人是在推车还是在骑自行车。根据不同的情况,相应的后续决策可能都会有所不同。而在智能工厂场景中,判断操作员是否操作安全正确也需要监控端的模型有理解主体之间关系的能力。

大多数现有的方法都是手动设置一些硬编码的规则。这使得模型缺乏泛化性,难以适应其他特定情况。

场景图生成任务(scene graph generation,或SGG)就旨在解决如上的问题。在对目标物体进行分类和定位的要求之上,SGG任务还需要模型预测对象之间的关系(见图 2)。

a77441c4-22e5-11ed-ba43-dac502259ad0.jpg

图2:场景图生成

传统场景图生成任务的数据集通常具有对象的边界框标注,并标注边界框之间的关系。但是,这种设置有几个固有的缺陷:

(1)边界框无法准确定位物体:如图2所示,边界框在标注人时不可避免地会包含人周围的物体;

(2)背景无法标注:如图2所示,大象身后的树木用bounding box标注,几乎覆盖了整个图像,所以涉及到背景的关系无法准确标注,这也使得场景图无法完全覆盖图像,无法达到全面的场景理解。

因此,作者提出全场景图生成(PSG)任务,携同一个精细标注的大规模PSG数据集。

a790abd4-22e5-11ed-ba43-dac502259ad0.png

图3:全场景图生成

如图 3 所示,该任务利用全景分割来全面准确地定位对象和背景,从而解决场景图生成任务的固有缺点,从而推动该领域朝着全面和深入的场景理解迈进。

论文信息

a7b9525a-22e5-11ed-ba43-dac502259ad0.png

Paper link: https://arxiv.org/abs/2207.11247

Project Page: https://psgdataset.org/

OpenPSG Codebase: https://github.com/Jingkang50/OpenPSG

Competition Link: https://www.cvmart.net/race/10349/base

ECCV’22 SenseHuman Workshop Link: https://sense-human.github.io/

HuggingFace Demo Link: https://huggingface.co/spaces/ECCV2022/PSG

作者提出的PSG数据集包含近五万张coco的图片,并基于coco已有的全景分割标注,标注了分割块之间的关系。

作者精细地定义了56种关系,包括了位置关系(over,in front of,等),常见的物体间关系(hanging from等),常见的生物动作(walking on,standing on,等),人类行为(cooking等),交通场景中的关系(driving,riding等),运动场景中的关系(kicking等),以及背景间关系(enclosing等)。

作者要求标注员能用更准确的动词表达就绝不用更模糊的表达,并且尽可能全地标注图中的关系。

a7c4f952-22e5-11ed-ba43-dac502259ad0.gif

PSG模型效果展示

任务优势

作者通过下图的例子再次理解全场景图生成(PSG)任务的优势:

a8536520-22e5-11ed-ba43-dac502259ad0.png

左图来自于SGG任务的传统数据集Visual Genome (VG-150)。可以看到基于检测框的标注通常不准确,而检测框覆盖的像素也不能准确定位物体,尤其是椅子,树木之类的背景。同时,基于检测框的关系标注通常会倾向于的标注一些无聊的关系,如「人有头」,「人穿着衣服」。

相比之下,右图中提出的 PSG 任务提供了更全面(包括前景和背景的互动)、更清晰(合适的物体粒度)和更准确(像素级准确)的场景图表示,以推动场景理解领域的发展。

两大类PSG模型

为了支撑提出的PSG任务,作者搭建了一个开源代码平台OpenPSG,其中实现了四个双阶段的方法和两个单阶段的方法,方便大家开发、使用、分析。

a877c10e-22e5-11ed-ba43-dac502259ad0.png

双阶段的方法利用Panoptic-FPN在第一阶段中对图像进行全景分割。

接下来作者提取全景分割得到的物体的特征以及每一对物体融合的关系特征,送至下一阶段的关系预测阶段。框架已集成复现了传统场景图生成的经典方法IMP,VCTree,Motifs,和GPSNet。

a890fe62-22e5-11ed-ba43-dac502259ad0.png

PSGFormer是基于双decoder DETR的单阶段方法。

模型首先在a)中通过卷积神经网络backbone提取图片特征并加以位置编码信息作为编码器的输入,同时初始化一组用以表示三元组的queries。

与DETR类似地, 在b)中模型将编码器的输出作为key和value与表示三元组的queries一同输入解码器进行cross-attention操作。

随后模型在c)中将解码完成的每个query分别输入主谓宾三元组对应的预测模块,最后得到对应的三元组预测结果。

a8a60924-22e5-11ed-ba43-dac502259ad0.png

PSGFormer基于双decode的DETR的单阶段方法。

模型在a) 通过CNN提取图片特征,加以位置编码信息输入编码器,同时初始化了两组queries分别代表物体和关系。

接着在b)步骤里,模型基于编码器编码的图片信息,分别在物体解码器和关系编码器中通过cross-attention解码学习物体query和关系query。

当两类query均学习完毕后,在c)中通过映射后匹配,得到成对的三元组query。

最后在d)中通过预测头分别完成关于物体query和关系query的预测,并根据c)中的匹配结果得到最终的三元组预测结果。

PSGTR与PSGFormer都是在DETR的基础上进行扩展和改进的模型,不同的地方在于PSGTR用一组query对于三元组直接建模而PSGFormer则通过两组query分别对物体和关系建模,两种方法各有利弊,具体可参考论文中实验结果。

结论分享

大部分在SGG任务上有效的方法在PSG任务上依旧有效。然而有一些利用较强的数据集统计先验,或主谓宾中谓语方向先验的方法可能没那么奏效。这可能是由于PSG数据集相较于传统VG数据集的bias没有那么严重,并且对谓语动词的定义更加清晰可学。因此,作者希望后续的方法关注视觉信息的提取和对图片本身的理解。统计先验可能在刷数据集上有效,但不本质。

相比于双阶段模型,单阶段模型目前能达到更好的效果。这可能得益于单阶段模型有关于关系的监督信号可以直接传递到feature map端,使得关系信号参与了更多的模型学习,有利于对关系的捕捉。但是由于本文只提出了若干基线模型,并没有针对单阶段或双阶段模型进行调优,因此目前还不能说单阶段模型一定强于双阶段模型。这还希望参赛选手继续探索。

相比于传统的SGG任务,PSG任务基于全景分割图进行关系配对,要求对于每个关系中主宾物体的id 进行确认。相比于双阶段直接预测全景分割图完成物体id 的划分,单阶段模型需要通过一系列后处理完成这一步骤。若基于现有单阶段模型进一步改进升级,如何在单阶段模型中更有效的完成物体id的确认,生成更好的全景分割图,仍是一个值得探索的话题

最后,欢迎大家试用HuggingFace:

a8d5786c-22e5-11ed-ba43-dac502259ad0.gif

Demo:https://huggingface.co/spaces/ECCV2022/PSG

关于图像生成的展望

最近大火的基于文字输入的生成模型(如DALL-E2) 着实令人惊叹,但是也有研究表明,这些生成模型可能只是把文本中的几个实体粘合在一起,甚至都没有理解文本中表述的空间关系。

如下图,虽然输入的是「杯子在勺子上」,生成的图片仍然都是「勺子在杯子里」。

a92c6f14-22e5-11ed-ba43-dac502259ad0.png

正巧,PSG数据集标注了基于mask的scene graph关系。

作者可以利用scene graph和全景分割mask作为训练对,得到一个text2mask的模型,在基于mask生成更细致的图片。

因此,PSG数据集有可能也为注重关系的图像生成提供了潜在的解决方案。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 计算机视觉
    +关注

    关注

    8

    文章

    1698

    浏览量

    45965
  • 数据集
    +关注

    关注

    4

    文章

    1208

    浏览量

    24683
  • 智能制造
    +关注

    关注

    48

    文章

    5541

    浏览量

    76304

原文标题:南洋理工提出全场景图生成PSG任务,像素级定位物体,还得预测56种关系

文章出处:【微信号:CVSCHOOL,微信公众号:OpenCV学堂】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    亿纬锂能全场景锂电池方案,加速万物互联

    日前,The smarter E Europe盛大开幕,亿纬锂能携全场景锂电池解决方案惊艳亮相,协同全球伙伴,展全方位实力。
    的头像 发表于 08-20 11:15 644次阅读

    惠普AI PC全场景AI解决方案重磅发布, AI一步到位,智能触手可及

    产品组合,并与本土软件合作伙伴携手,共同构建惠普专属的AI生态,力求满足用户在工作、生活、娱乐全场景下的使用需求,实现AI技术在日常生活中的无缝融入,助力用户在工作效率和生活体验上实现双重提升。 (:2024惠普AI PC 全场景
    的头像 发表于 08-02 17:53 658次阅读
    惠普AI PC<b class='flag-5'>全场景</b>AI解决方案重磅发布, AI一步到位,智能触手可及

    专注充电充满想象,罗马仕全球品牌升级打造全场景用电体验生态

    2024年7月19日,深圳罗马仕科技有限公司(以下简称罗马仕)召开了“专注充电,充满想象”为主题的全球品牌升级暨新品发布会,重点诠释罗马仕全场景用电体验战略方向。全场景用电体验战略是罗马仕多年来专注
    的头像 发表于 07-21 10:15 587次阅读
    专注充电充满想象,罗马仕全球品牌升级打造<b class='flag-5'>全场景</b>用电体验生态

    专注充电充满想象,罗马仕全球品牌升级打造全场景用电体验生态

    2024年7月19日,深圳罗马仕科技有限公司(以下简称罗马仕)召开了“专注充电,充满想象”为主题的全球品牌升级暨新品发布会,重点诠释罗马仕全场景用电体验战略方向。全场景用电体验战略是罗马仕多年来专注
    发表于 07-19 20:46 375次阅读
    专注充电充满想象,罗马仕全球品牌升级打造<b class='flag-5'>全场景</b>用电体验生态

    图像语义分割的实用性是什么

    图像语义分割是一种重要的计算机视觉任务,它旨在将图像中的每个像素分配到相应的语义类别中。这项技术在许多领域都有广泛的应用,如自动驾驶、医学图像分析、机器人导航等。 一、图像语义分割的基本原理 1.1
    的头像 发表于 07-17 09:56 408次阅读

    图像分割和语义分割的区别与联系

    图像分割和语义分割是计算机视觉领域中两个重要的概念,它们在图像处理和分析中发挥着关键作用。 1. 图像分割简介 图像分割是将图像划分为多个区域或对象的过程。这些区域或对象具有相似的属性
    的头像 发表于 07-17 09:55 881次阅读

    图像分割与目标检测的区别是什么

    图像分割与目标检测是计算机视觉领域的两个重要任务,它们在许多应用场景中都发挥着关键作用。然而,尽管它们在某些方面有相似之处,但它们的目标、方法和应用场景有很大的不同。本文将介绍图像
    的头像 发表于 07-17 09:53 1259次阅读

    机器学习中的数据分割方法

    在机器学习中,数据分割是一项至关重要的任务,它直接影响到模型的训练效果、泛化能力以及最终的性能评估。本文将从多个方面详细探讨机器学习中数据分割的方法,包括常见的分割方法、各自的优缺点、
    的头像 发表于 07-10 16:10 1640次阅读

    图像分割与语义分割中的CNN模型综述

    图像分割与语义分割是计算机视觉领域的重要任务,旨在将图像划分为多个具有特定语义含义的区域或对象。卷积神经网络(CNN)作为深度学习的一种核心模型,在图像分割与语义
    的头像 发表于 07-09 11:51 798次阅读

    机器人视觉技术中常见的图像分割方法

    场景理解、导航和交互等任务至关重要。以下是一些常见的图像分割方法: 阈值分割法(Thresholding) 阈值分割法是一种基于像素强度的
    的头像 发表于 07-09 09:31 617次阅读

    华为举办夏季全场景新品发布会

    昨日,华为盛大举办夏季全场景新品发布会,多款创新产品璀璨亮相。其中,华为MateBook 14、MatePad 11.5“S、WATCH FIT 3、儿童手表5 Pro、Vision智慧屏 4以及智能眼镜2等新品,展现了华为在智慧办公、运动健康、影音娱乐、智能家居等多个领域的强大实力。
    的头像 发表于 05-16 10:23 511次阅读

    华为发布全场景智能通信电源解决方案

    第八届全球ICT能效峰会近日在泰国曼谷盛大召开,主题为“绿色站点,智赢未来”。在这次峰会上,华为数字能源站点能源领域大放异彩,正式发布了引人注目的“华为全场景智能通信电源解决方案”。
    的头像 发表于 05-15 10:36 486次阅读

    知语云全景监测技术:现代安全防护的全面解决方案

    的扩散和破坏。 易于部署,易于管理:知语云全景监测技术采用云计算架构,支持快速部署和弹性扩展,用户无需投入大量的人力物力,即可轻松实现安全防护的全面升级。 知语云全景监测技术的应用场景非常广泛,无论是
    发表于 02-23 16:40

    无人机全景监测:空域管理的新革命

    到达指定区域,并通过搭载的先进传感器获取高分辨率的影像数据。这些数据经过处理后,可以生成三维全景图,为管理者提供直观、准确的空域信息。 二、提升空域管理效率的关键 传统的空域管理方法往往依赖于地面设施
    发表于 02-20 15:23

    15倍加速!SuperCluster:最强3D点云全景分割

    S3DIS Area 5的大规模全景分割结果,共有9.2 M个点( 78M预采样)和1863个真实"物"对象。SuperCluster可以在3.3秒内在单块V100 - 32GB GPU上一次推理处理如此大的扫描,并达到50.1的PQ值。
    的头像 发表于 01-22 14:03 630次阅读
    15倍加速!SuperCluster:最强3D点云<b class='flag-5'>全景</b><b class='flag-5'>分割</b>!