电子发烧友网报道(文/李宁远)在机器人行业里,伺服驱动是一个老生常谈的话题了。随着工业4.0的加速更迭,机器人的伺服驱动也随之升级。现在的机器人系统既要求驱动系统能控制更多的轴数,还要能实现更多智能化的功能。
在多轴工业机器人运行中的每个节点上,它必须在三个维度上使用不同大小的力才能完成设定的搬运等任务。机器人中的电机能够在精确的点提供可变速度和扭矩,控制器使用它们沿着不同的轴协调运动,从而实现精确的定位。在机器人完成搬运任务后,电机会减小扭矩,同时将机械臂返回到其初始位置。
这种高效伺服系统由高性能控制信号处理、精确感应反馈、电源以及智能电机驱动一起组成,提供复杂的接近瞬时响应的精确速度和扭矩控制。
高速实时伺服环路控制—控制信号处理与感应反馈
伺服环路实现高速数字化实时控制的基础离不开微电子制造工艺的升级。以最常见的三相电运行的机器人电机为例,PWM三相逆变器生成高频脉冲电压波形,以独立相将这些波形输出到电机的三相绕组中。在这三个功率信号中,电机负载的变化会影响感应、数字化并发送到数字处理器的电流反馈。再由数字处理器进行高速信号处理算法决定输出。
这里不仅要求数字处理器的高性能,对电源也有严格的设计要求。我们先看处理器部分,内核运算速度必须要跟上自动化升级的脚步,这个现在已经不再是问题。一些运控芯片将电机控制所必需的A/D转换器、位置/速度检测倍频计数器、PWM发生器等等与处理器内核集成于一体,使得伺服控制回路采样时间大大缩短,由单一芯片实现了自动加减速控制,齿轮同步控制,位置、速度、电流三环的数字化补偿控制。
控制算法如速度前馈、加速度前馈、低通滤波、凹陷滤波也在单芯片上实现。处理器的选取这里不再赘述,在此前的文章中已经对各类机器人应用做过分析,不管是低成本应用,还是对编程和算法有较高要求的应用目前市面上已经有很多选择,优势各异。
不只是电流反馈,其他的感应数据也会送到控制器中来跟踪系统电压和温度的变化。高分辨率的电流和电压检测反馈一直是电机控制里的难题。同时检测所有分流器/霍尔传感器/磁传感器的反馈无疑是最好的,不过这样对设计有很高的要求,而且计算能力要跟得上。
同时为了避免信号的丢失和干扰,在靠近传感器的边缘对信号进行数字化,随着采样率上升,信号漂移带来的数据错误也不少,设计需要通过感应和算法调整对这些变化进行补偿。这样伺服系统才能在各种条件下保持稳定。
可靠精准伺服驱动—电源与智能电机驱动
具有稳定高分辨率控制的超高速开关功能的电源为可靠精准的伺服控制供电,目前有很多厂商都有采用高频材料的集成式电源模块,设计起来容易了很多。
开关模式电源在基于控制器的闭环电源拓扑中运行,两种常用的电源开关是功率MOSFET和IGBT。栅极驱动器在采用开关模式电源的系统中很常见,开关模式电源通过对ON/OFF状态的控制在这些开关的栅极上进行调节电压和电流。
在开关模式电源和三相逆变器的设计上,各类高性能的智能栅极驱动器、内置FET的驱动器、集成控制功能的驱动器层出不穷。内置FET和电流采样功能的集成设计,可以大幅减少外部元器件的使用,PWM和使能、上下管、霍尔信号输入逻辑配置大大增加了设计的灵活性,既简化了开发流程,又提升了电源效率。
伺服驱动IC也将集成度发挥到最大,完全集成的伺服驱动IC可以大大缩短伺服系统出色动态性能的开发时间。预驱、传感、保护电路和电源桥集成到一个封装中可以最大限度地降低整体功耗和系统成本。这里列的是Trinamic(ADI)的完全集成式的伺服驱动IC框图,所有控制功能都在硬件中实现,集成ADC、位置传感器接口、位置内插器,功能齐全适用于各种伺服应用。
小结
高效伺服系统里高性能控制信号处理、精确感应反馈、电源以及智能电机驱动缺一不可,高性能器件的相互配合才能给机器人实时提供在运动中瞬间响应的精确速度与扭矩控制。在更高的性能之余,各个模块的高集成度也提供了更低的成本和更高的工作效率。
在多轴工业机器人运行中的每个节点上,它必须在三个维度上使用不同大小的力才能完成设定的搬运等任务。机器人中的电机能够在精确的点提供可变速度和扭矩,控制器使用它们沿着不同的轴协调运动,从而实现精确的定位。在机器人完成搬运任务后,电机会减小扭矩,同时将机械臂返回到其初始位置。
这种高效伺服系统由高性能控制信号处理、精确感应反馈、电源以及智能电机驱动一起组成,提供复杂的接近瞬时响应的精确速度和扭矩控制。
高速实时伺服环路控制—控制信号处理与感应反馈
伺服环路实现高速数字化实时控制的基础离不开微电子制造工艺的升级。以最常见的三相电运行的机器人电机为例,PWM三相逆变器生成高频脉冲电压波形,以独立相将这些波形输出到电机的三相绕组中。在这三个功率信号中,电机负载的变化会影响感应、数字化并发送到数字处理器的电流反馈。再由数字处理器进行高速信号处理算法决定输出。
这里不仅要求数字处理器的高性能,对电源也有严格的设计要求。我们先看处理器部分,内核运算速度必须要跟上自动化升级的脚步,这个现在已经不再是问题。一些运控芯片将电机控制所必需的A/D转换器、位置/速度检测倍频计数器、PWM发生器等等与处理器内核集成于一体,使得伺服控制回路采样时间大大缩短,由单一芯片实现了自动加减速控制,齿轮同步控制,位置、速度、电流三环的数字化补偿控制。
控制算法如速度前馈、加速度前馈、低通滤波、凹陷滤波也在单芯片上实现。处理器的选取这里不再赘述,在此前的文章中已经对各类机器人应用做过分析,不管是低成本应用,还是对编程和算法有较高要求的应用目前市面上已经有很多选择,优势各异。
不只是电流反馈,其他的感应数据也会送到控制器中来跟踪系统电压和温度的变化。高分辨率的电流和电压检测反馈一直是电机控制里的难题。同时检测所有分流器/霍尔传感器/磁传感器的反馈无疑是最好的,不过这样对设计有很高的要求,而且计算能力要跟得上。
同时为了避免信号的丢失和干扰,在靠近传感器的边缘对信号进行数字化,随着采样率上升,信号漂移带来的数据错误也不少,设计需要通过感应和算法调整对这些变化进行补偿。这样伺服系统才能在各种条件下保持稳定。
可靠精准伺服驱动—电源与智能电机驱动
具有稳定高分辨率控制的超高速开关功能的电源为可靠精准的伺服控制供电,目前有很多厂商都有采用高频材料的集成式电源模块,设计起来容易了很多。
开关模式电源在基于控制器的闭环电源拓扑中运行,两种常用的电源开关是功率MOSFET和IGBT。栅极驱动器在采用开关模式电源的系统中很常见,开关模式电源通过对ON/OFF状态的控制在这些开关的栅极上进行调节电压和电流。
在开关模式电源和三相逆变器的设计上,各类高性能的智能栅极驱动器、内置FET的驱动器、集成控制功能的驱动器层出不穷。内置FET和电流采样功能的集成设计,可以大幅减少外部元器件的使用,PWM和使能、上下管、霍尔信号输入逻辑配置大大增加了设计的灵活性,既简化了开发流程,又提升了电源效率。
伺服驱动IC也将集成度发挥到最大,完全集成的伺服驱动IC可以大大缩短伺服系统出色动态性能的开发时间。预驱、传感、保护电路和电源桥集成到一个封装中可以最大限度地降低整体功耗和系统成本。这里列的是Trinamic(ADI)的完全集成式的伺服驱动IC框图,所有控制功能都在硬件中实现,集成ADC、位置传感器接口、位置内插器,功能齐全适用于各种伺服应用。
小结
高效伺服系统里高性能控制信号处理、精确感应反馈、电源以及智能电机驱动缺一不可,高性能器件的相互配合才能给机器人实时提供在运动中瞬间响应的精确速度与扭矩控制。在更高的性能之余,各个模块的高集成度也提供了更低的成本和更高的工作效率。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
机器人
+关注
关注
211文章
28632浏览量
208264 -
伺服系统
+关注
关注
14文章
576浏览量
39326
发布评论请先 登录
相关推荐
【「具身智能机器人系统」阅读体验】2.具身智能机器人的基础模块
具身智能机器人的基础模块,这个是本书的第二部分内容,主要分为四个部分:机器人计算系统,自主机器人的感知系统,自主
发表于 01-04 19:22
伺服系统智能化发展趋势
(通常是电信号)来调整输出,以实现精确的位置、速度或力控制。在工业自动化领域,伺服系统广泛应用于机器人、数控机床、包装机械等设备中。 2. 伺服系统的智能化需求 随着生产效率和产品质量要求的提高,传统的
伺服系统在机器人中的作用 伺服系统与传统电机对比
伺服系统在机器人中的作用 机器人技术是现代工业自动化的重要组成部分,它涉及到机械、电子、计算机科学、控制理论等多个学科。在这些技术中,伺服系统扮演着至关重要的角色。
伺服系统与步进电机的区别 如何选择合适的伺服系统
在自动化和精密控制领域,电机的选择至关重要。伺服系统和步进电机是两种常见的电机类型,它们各自具有独特的优势和局限性。 伺服系统与步进电机的基本区别 1. 控制原理 伺服系统 :伺服系统
伺服系统工作原理解析 伺服系统在自动化中的应用
伺服系统工作原理解析 伺服系统是一种可以按照外部指令进行人们所期望的运动的自动控制系统,它能使物体的位置、方位、状态等输出被控量跟随输入目标(或给定值)的变化而变化。伺服系统主要由
伺服控制机器人的控制方式有哪些
伺服控制机器人是一种高度精确的自动化设备,它能够执行复杂的任务,如精确定位、重复运动和力控制。伺服控制系统是机器人技术中的核心部分,它负责接
伺服系统基本概念和与变频的关系
伺服系统的基本概念是准确、精确、快速定位。这一概念贯穿于伺服系统的设计理念和运行机制中。为了实现这一目标,伺服系统采用了多种先进的控制策略和技术手段。其中,变频技术是伺服控制的一个必不
影响伺服系统稳态速度精度的因素
伺服系统是一种高精度、高响应速度的控制系统,广泛应用于工业自动化、机器人、航空航天等领域。伺服系统的性能直接影响到设备的运行精度和稳定性。 伺服
AMD Kria™ KR 260套件+ROS 2快速开发机器人解决方案
伺服系统,其中不仅包含电机,还包含微控制器和网络功能。虽然这使得机器人应用所需的复杂电机驱动成为可能,但这也意味着每个伺服系统都有几个不同的驱动和控制机制。通常,当使用这种复杂的伺服和
数控机床对伺服系统的要求有哪些?
引言 数控机床是一种采用数字程序控制的机床,具有高精度、高效率、高自动化程度等特点。伺服系统作为数控机床的核心部分,主要负责接收数控系统的指令信号,控制机床各轴的移动和定位,以实现对工件的加工。因此
交流伺服系统的组成和应用
在现代工业自动化和精密控制领域中,交流伺服系统扮演着至关重要的角色。它以其高精度、高稳定性、快速响应和灵活性等优点,广泛应用于各种工业设备、机器人、数控机床等领域。本文将详细阐述交流伺服系统的基本概念、工作原理、组成部分、应用领
伺服系统的结构组成及应用场景
伺服系统,作为自动化和精密控制领域的关键组成部分,广泛应用于各类工业和科研领域。其高精度、高响应速度以及优良的稳定性使得伺服系统在现代工业中扮演着举足轻重的角色。本文将对伺服系统的结构组成进行详细介绍,并对
基于FPGA EtherCAT的六自由度机器人视觉伺服控制设计
和增强系统处理图像的实时性,本文提出了一种伊瑟特的六自由度机器人视觉伺服控制系统,将摄像头集成到基于 Zynq的伊瑟特主站上,提高了视觉伺服
发表于 05-29 16:17
评论