0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种线性配对的电化学甘油转化策略

倩倩 来源:清新电源 作者:清新电源 2022-08-25 10:36 次阅读

成果介绍

将廉价的生物质原料如甘油电化学价化转化为高价值化学品,为生物质资源的可持续利用和化工生产的脱碳提供了一条途径。然而,甘油通常仅通过阳极氧化进行转化,在阴极产生氢气等低价值产物。

美国威斯康星大学麦迪逊分校金松、J. R. Schmidt等人首先通过理论计算与实验探究,证明了NiSe2对酸性H2O2电合成过程具有高选择性和稳定性。接着,作者发现由NiSe2阴极通过电化学芬顿过程,可将电解液中的甘油进行氧化,得到稳定且高附加价值的C3产物。

因此,作者提出了一种线性配对的电化学过程,通过良好控制电化学芬顿过程中产生的羟基自由基,可以在NiSe2阴极和Pt阳极上同时将甘油转化为相同的氧化产物。值得注意的是,该体系所需能耗很低,且能够实现高的甘油转化率以及高选择性的增值C3产物。这种线性配对的概念策略可推广应用于各种生物质原料的高效电精炼过程。

相关工作以Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode为题在Nature Catalysis上发表论文。

65c513de-2402-11ed-ba43-dac502259ad0.png

图文介绍

65ddaa52-2402-11ed-ba43-dac502259ad0.png

图1. 电化学甘油转化的不同配对策略

传统地,甘油在阳极上发生氧化反应、转化为高附加价值的氧化产物,与之相配对的阴极反应通常是析氢反应(HER)、氧还原反应(ORR)或CO2还原反应(CO2RR)等。在这种情况下,阴极上所得还原产物的附加价值较低,且反应体系比较复杂,电解成本较高。

在这里,本文提出了一种线性配对的电化学甘油转化策略。首先,系统研究了甘油在阴极上的电化学芬顿过程的转化,进一步将阳极上甘油的氧化进行配对,成功实现了在阴极和阳极同时产生相同的甘油衍生氧化产物。

65f08afa-2402-11ed-ba43-dac502259ad0.png

图2. c-NiSe2与c-CoSe2的ORR热力学和表面稳定性的计算

由于Fe2+介导的电化学芬顿过程需要在酸性介质下进行,同时产生的·OH又具有强氧化性,因此,需要寻找一种既能对酸性2电子ORR有高选择性、同时能在H2O2、·OH等强氧化剂存在下保持稳定的电催化剂。在此,寻找了两种催化剂进行讨论,分别为c-NiSe2与c-CoSe2。计算结果显示,c-NiSe2不仅对2电子ORR显示出更高的活性与选择性,同时在水环境和ORR条件下具有更强的抗表面氧化和降解能力。

66082aa2-2402-11ed-ba43-dac502259ad0.png

图3. 酸性介质下电合成H2O2的催化性能及稳定性

接着在酸性介质下调查c-NiSe2与c-CoSe2催化剂的电合成H2O2性能。在O2饱和的0.05 M H2SO4 (pH~1.2)中,c-NiSe2表现出较高的H2O2选择性(高达95%),选择性与过电位和催化剂负载的依赖性相对较小。虽然c-CoSe2对2电子ORR的催化活性更高,但H2O2的选择性随着过电位和催化剂负载的增加而急剧下降。

稳定性测量结果显示,c-CoSe2中Co和Se浸出率的比值接近1:2,这与O*对Se位点的高亲和性有关,由于Se22-表面被氧化为可溶的SeOx,导致c-CoSe2失稳而发生降解。相比之下,较稳定的c-NiSe2中Se的浸出不仅比c-CoSe2中明显受到抑制,而且Ni的浸出也比较缓慢。深入的催化剂浸出研究进一步证实了c-NiSe2对酸性2电子ORR具有增强的稳定性。

6625b1ee-2402-11ed-ba43-dac502259ad0.png

图4. 在NiSe2阴极上通过电芬顿过程来实现甘油的转化

在含Fe2+和甘油的O2饱和0.1 M NaHSO4/Na2SO4缓冲溶液中,在NiSe2/CFP阴极上实现电化学芬顿过程介导的甘油转化。采用1H和13C核磁共振光谱来识别和量化产物。首先,研究了Fe2+浓度([Fe2+])对电化学芬顿过程介导的甘油转化的影响。根据速率定律,随着Fe2+浓度的增加,芬顿反应生成·OH的速率增加,但过量的Fe2+会消耗生成的·OH,降低氧化能力。当Fe2+浓度大于0.5 mM时,甘油转化率较高;当Fe2+浓度较低(0.1mM)时,甘油转化率较低,这可能与·OH的缓慢生成有关。另一方面,当Fe2+浓度小于等于1.0 mM时,对所有C3产物(甘油醛(GLAD)、DHA和甘油酸(GLA))的选择性较高,但当Fe2+浓度大于2.5 mM时,选择性大幅下降。

66434dc6-2402-11ed-ba43-dac502259ad0.png

图5. 在NiSe2阴极和Pt阳极上同时实现甘油的转化

为了使甘油同时在阴极和阳极上进行转化,甘油的阳极氧化需要在酸性溶液中进行,以满足电化学芬顿工艺的pH要求。因此,在含饱和Ar的、含50 mM甘油的H2SO4溶液中,在负载商业Pt催化剂的阳极上进行了甘油氧化。这种配对体系需要在双室H型电解槽中运行,以避免O2在Pt/C阳极上发生ORR过程。

因此,在0.1 M的NaHSO4/Na2SO4阴极液和0.05 M的H2SO4阳极液中,该配对体系在外部电位1 V左右下稳定运行。产物在阴极电解液和阳极电解液中的分布与在相似条件下各自的半电池研究中的结果非常相似,即C3产物的比例较高。当阴极液和阳极液的浓度均为0.5 M时,该体系可以在低至0.2 V的电位下运行。由于中间产物的连续氧化,配对体系的阴极液和阳极液中的C3产物选择性均随着甘油转化率的增加而降低,最高可达53%。

文献信息

Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode,Nature Catalysis,2022.

https://www.nature.com/articles/s41929-022-00826-y

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电化学
    +关注

    关注

    1

    文章

    322

    浏览量

    20597
  • 阴极
    +关注

    关注

    1

    文章

    42

    浏览量

    15198

原文标题:金松教授最新Nature Catalysis,电催化还带这么玩的?!

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    电化学气体传感器信号放大调试经验

    好气体和气罩,流量计建议调试0.5L/min~1L/min,待信号电压输出VOUT的电压稳定后,将这个电压标注为满量程。 建议:如果想要传感器的数据更线性,建议多标定个点,正常市场上的气体传感器是标定零点和满量程点,你可以增加标定量程的50%点。*附件:
    发表于 11-16 11:26

    扫描速率对各体系的电化学行为有什么影响

    扫描速率(Scan Rate)是电化学测试中个重要的参数,它影响着电化学反应的动力学特性和电极过程的控制步骤。在电化学实验中,扫描速率决定了电位变化的速度,进而影响电极表面的电荷转移
    的头像 发表于 10-14 14:51 1192次阅读

    电化学感知技术的新时代

    图1智能健康监测和可穿戴设备是先进传感器平台的关键应用(来源: Adobe Stock) 在科学探索的前沿,电化学感知是一种不可或缺且适应性强的工具,影响着各行各业。从生命科学、环境科学到工业材料
    发表于 09-05 11:43 942次阅读
    <b class='flag-5'>电化学</b>感知技术的新时代

    电化学测试方法详解

    伴随当今世界发展,不仅电化学理论和电化学方法不断创新,而且在应用领域也占有越来越重要的地位。新能源汽车工业以及生物电化学这些领域所取得的突出成绩都是比较典型的例子,因此强调并且重视电化学
    的头像 发表于 07-03 10:13 1447次阅读
    <b class='flag-5'>电化学</b>测试方法详解

    电化学储能与光伏储能的区别

    随着全球对可再生能源和清洁能源技术的日益重视,电化学储能和光伏储能作为两重要的能源存储方式,受到了广泛关注。尽管它们都与能源存储相关,但在原理、应用、技术特点等方面存在显著的区别。本文将对电化学储能和光伏储能进行详细对比,以揭
    的头像 发表于 05-20 16:34 933次阅读

    电化学储能与物理储能的对比

    在能源存储领域,电化学储能和物理储能是两重要的储能方式。它们各自具有独特的原理和优势,并在不同的应用场景中发挥着重要作用。本文将对电化学储能和物理储能进行详细的对比,旨在揭示它们之间的主要差异和各自的优势。
    的头像 发表于 05-20 16:27 1366次阅读

    电化学储能与电池储能的区别

    在能源领域,储能技术直是研究的热点和关键。电化学储能和电池储能作为两重要的储能方式,在能源储存和转换中发挥着重要作用。然而,尽管它们之间存在紧密的联系,但两者在原理、应用以及技术特点等方面存在着显著的差异。本文将对
    的头像 发表于 05-20 16:22 1105次阅读

    电化学储能的基本原理介绍

    随着全球能源危机的加剧和环境保护意识的提高,可再生能源的利用和能源储存技术成为了研究的热点。电化学储能技术作为其中的一种重要方式,以其高效、环保、灵活等特性,受到了广泛关注。本文将详细介绍电化学储能的基本原理,以及其在能源领域的
    的头像 发表于 05-20 16:11 2682次阅读

    电化学储能电池是燃料电池吗

    电化学储能电池和燃料电池是两不同的电化学能源系统,它们在工作原理、结构组成、应用场景以及能源存储和转换方式上存在显著差异。
    的头像 发表于 05-16 17:40 1120次阅读

    关于电化学储能的BMS可行性方案

    系统市场体量将进步扩大的积极信号。 电化学储能 电化学储能是一种通过液流电池、锂离子电池以及钠硫电池等方式将电能储存起来的
    发表于 05-16 17:08

    电化学储能和化学储能样吗

    电化学储能和化学储能是两不同的储能方式,它们在能量存储的原理、应用场景、技术特点等方面存在显著差异。
    的头像 发表于 04-26 15:18 1596次阅读

    电化学储能的特点包括哪些?电化学储能的效率?

    电化学储能是一种通过电池或其他电化学设备的化学反应来存储和释放能量的技术。它在电力系统、新能源汽车、便携式电子设备等领域有着广泛的应用。
    的头像 发表于 04-26 15:15 1527次阅读

    什么是电化学储能?电化学储能技术主要包括哪些?

    电化学储能是一种通过电化学反应将电能转换为化学能进行存储,并在需要时再将化学能转换回电能的技术。
    的头像 发表于 04-26 15:09 5878次阅读

    一种基于熵驱动双足DNA walker的微米电极电化学传感器

    超微电极是维尺寸在微米或亚微米级的电化学传感器,具有尺寸小、传质速率快、时-空分辨率高等多种优势,因此被广泛应用于电化学研究和传感
    的头像 发表于 04-15 11:18 1030次阅读
    <b class='flag-5'>一种</b>基于熵驱动双足DNA walker的微米电极<b class='flag-5'>电化学</b>传感器

    什么是电化学电容器?电化学超级电容器有什么特点?

    什么是电化学电容器?电化学超级电容器有什么特点? 电化学电容器是一种储能装置,它利用电化学反应将电能转化
    的头像 发表于 03-05 16:30 1023次阅读