0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何用语言模型(LM)实现建模能力

深度学习自然语言处理 来源:深度学习自然语言处理 作者:深度学习自然语言 2022-08-30 10:08 次阅读

前言

相信每个 NLPer 心中都有对 Reasoning 的一片期冀。

当初笔者进入 NLP 的大门,就是相信:由于语言强大的表达能力以及语言模型强大的建模能力,Reasoning 一定就在不久的将来!可惜实际情况却是......

直到我看到了 Yoshua Bengio 最近反复强调的 System 2 的概念,又重新燃起了心中的希望!

System 2 主要针对深度学习系统的 Reasoning 能力以及系统泛化(Systematic Generalization)等等。其中一个很重要的点是:sparse factor graph in space of high-level semantic variables. 结合 QA 的例子以及我浅薄的理解,这里做一些简单的解释:

factor graph : 从 Q 到 A 的机理,往往不是 Q -> A 这么简单,实际人类在建模 QA 的时候,会在这条路径上增添很多很多的辅助状态以及相应的运作机理,例如 Causal Inference 中常说的 SCM (Structural Causal Model)

sparse : from attention to conscious processing. 人类不会同时关注所有的状态(变量),而只会关注其中一些比较重要的或者相关的状态。通过这种主动的稀疏选择,在面对 distribution change 的时候,能够迅速更换另外的状态和运作机理进行适应(adaptation).

high-level semantic variables : 这些状态的表达,一般是一个高阶的语义变量。

在今天这篇推文里,我们主要讨论如何用语言模型(LM)实现这件事情。

那现在就以 Google Research 等的新文章 “Language Model Cascades” 开始,聊一聊 A Path Towards Universal Reasoning Systems.

总的来说,这篇文章是个 Proposal 性质的文章,核心论点是:利用概率编程语言,重复地提示(prompt)或调整单个或多个互相关联的语言模型,以进行复杂的多步推理。

这样,基于一个端到端的学习目标,就能够使用一个通用过程进行系列模型的 inference, 参数调整或者 prompt 选择。

还是用 QA 的例子,一般的 QA 是这样的:

我们有两种方式去做这件事情(假设数据集为 ):

few-shot prompting (aka. in-context learning) : ,即将小样本集作为输入的上下文拼接在输入的前面,而不去调整模型参数,常用于 GPT-3 等模型;

fine-tune : tuned on ,即使用训练集调整模型参数。

然后,我们定义语言模型级联(LM Cascades): 以从语言模型采样出的字符串为随机变量取值的一系列相互关联的概率程序。

string-valued : 例如 P(A='老鼠'|Q='猫喜欢吃什么')

相互关联的概率程序:可以简单地理解为图形式的模型链条,详见下文。

成功的例子

Scratchpads & Chain of Thought

19666f18-27dd-11ed-ba43-dac502259ad0.png

这类模型的 Cascades 如上图所示,总的来说是一种 Question-Thought-Answer 的结构:

理想情况下的概率建模为:

但在实际场景下, 通常我们只有一个 small set 由完整的 三元组组成, 以及一个 large set 由 对组成。因为缺乏完全的监督数据,我们只能通过先验预测分布 去建模:

Scratchpad[1] 和 Chain-of-Thought[2] 两种模型所做的事情,本质上是建模这个先验预测分布(prior predictive distribution):

scratchpad : 通过精调 (finetuning) 去做。

chain of thought : 将 作为 prompt, 即通过 few-shot prompting 去做。

多说一句:在全部的 上面进行求和显然不现实,通常采用的方式是:使用 beam search 估计 ,然后在此之上进行求和。

Semi-Supervised Learning

197878c0-27dd-11ed-ba43-dac502259ad0.png

仍然是 Question-Thought-Answer 的结构,但在半监督学习的设定下,我们是为 中的 Q-A 对新增一些未知隐变量 去解决。这样就变成了一个比较典型的变分推断问题。

这类方法比较典型的工作是:Self-Taught Reasoner (STaR) [3],该模型使用 EM 算法进行优化:

-步: 首先在 上精调模型,然后对于 , 通过在 上的拒绝采样估计未知量 . 直到找到能够导致正确回答 的 . (如果找不到, 就从 采样) (这种方式也称为 :“rationale generation with rationalization”).

-步: 基于所估计的 上的 , 再次精调模型更新参数。

Selection-Inference

19857304-27dd-11ed-ba43-dac502259ad0.png

这类方法[4]将推理过程分为两个部分:

选择:给定问题 , 从事件集合 中选择相关子集;

推断:给定事件子集,推测新的事件集合。

Verifiers

199d7986-27dd-11ed-ba43-dac502259ad0.png

这类方法[5]新增了一些验证器 ,来判断 Thought 或者 Answer 是否合理有效(valid):

where

Tool-use

上面这些方法仅仅是 Language Model 的控制流,没有外部的反馈(external feedback).

在 Cascades 的框架下,我们可以非常方便的引入外部工具,以进行额外的知识补充,比如:

calculator : Training verifiers to solve math word problems (https://arxiv.org/abs/2110.14168).

web : WebGPT: Browser-assisted question-answering with human feedback (https://openai.com/blog/webgpt/).

simulation : The frontier of simulation-based inference (https://www.pnas.org/doi/10.1073/pnas.1912789117)

Twenty Questions

19ada54a-27dd-11ed-ba43-dac502259ad0.png

再举一个交互式问答的例子,如上图,是 Big-Bench [6] 中的一个任务:两个 agent, 分别叫做 Alice (A) 和 Bob (B). 在给定的游戏规则下,两个 agent 进行语言交流,A 描述一个概念,B 去猜,然后 A 回答是或不是,直到 B 猜出来。

这样一个过程也能很容易地归结到 Cascades 的框架中去。

未来

回到最初的问题,Sparse Factor Graph 以及 High-Level Semantic Variables. 我们可以先抛弃掉 Causal Mechanism 等复杂的问题,先只去考虑这种简单的 Cascading Mechanism.

笔者一直觉得,只用一个模型 One-For-All 肯定是行不通的:虽然我们有 Gato [7] 等所谓的 Generalist Agent,我们也很难 claim 这些模型有 Human-level 的 Out-of-Distribution 的泛化能力,或者 Systematic Generalization. 这也符合 No-Free-Lunch Theorem 一直以来告诉我们的事情。这是第一点。

第二点是,对于 Universal Reasoning 而言,本质的问题并不是如何 encode 尽可能多的知识到单个模型当中,而是:How to re-use pieces of knowledge.

那么基于这两点,就涉及到一个模块化的问题:我们能不能定义一些模块化的知识以及这些模块之间的交互方式,来实现更加本质的 Reasoning (参考:Is a Modular Architecture Enough? [8])

LM Cascades 就是这个思想的一个很好的尝试:不同的语言模型对应着不同功能的知识模块,然后通过人为定义的交互 Graph 来执行特定的任务。这么做的好处至少是:

端到端的模块化:以一种端到端的方式,做到了不同语言模型,根据其所执行的不同功能,进行专门的精调优化(finetuning)或者提示优化(prompting)。

sparse factor graph : 以一种人为定义的方式,指定了任务内在的知识结构,比如将 Q->A 分解为 Q->T->A 等。这也是近期各种 Chain-of-Thoughts 相关工作令人兴奋的点,例如 AI Chains [9] 等。这种知识结构是稀疏的,因为我们人为定义了某个 LM 是基于哪个特定的 LM,而不是全部 LM.

high-level semantic variables : 语言的表达能力是极大的,因此,以 language 作为 variable value 的一个图结构,具有非常强大的对于实际问题的建模能力。当然,language 只是一个选择,high-layer hidden states 也是一个(可能更好的)选择。

当然,不只有语言模型可以级联,多模态模型也能够级联:比如同样来自 Google 的 Socratic Models [10], 就级联了三个模态(语言-视觉-音频)的语言模型,达到了很好的零样本多模态推理能力。

19c0754e-27dd-11ed-ba43-dac502259ad0.png

因此,笔者相信 LM Cascades 体现出了 Reasoning System 的未来:(1)模块化、(2)稀疏化、(3)结构化。

这样一个系统,以语言为媒介,最好可以通过一种端到端的方式去进行优化。从这个角度看,这个 Proposal 还有很多需要探索的点,例如:

既然“端到端+手工Cascading“可以同时做到这三点,那么有没有什么办法,把 Cascading 也纳入到端到端的过程中呢(即以一种自动或者可微的方式进行),以找到一种稀疏的条件结构?

有没有什么更好的模块化机制?

推理速度...

等等。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 建模
    +关注

    关注

    1

    文章

    309

    浏览量

    60784
  • 编程语言
    +关注

    关注

    10

    文章

    1946

    浏览量

    34801
  • 语言模型
    +关注

    关注

    0

    文章

    527

    浏览量

    10290

原文标题:谷歌:级联语言模型是通用推理系统的未来

文章出处:【微信号:zenRRan,微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    【大语言模型:原理与工程实践】揭开大语言模型的面纱

    。这一过程的不断迭代使大语言模型语言理解和生成能力逐步提升。大语言模型在自然
    发表于 05-04 23:55

    【大语言模型:原理与工程实践】大语言模型的基础技术

    之后,成为文本建模领域的热门架构。不仅如此,它还对自然语言处理领域产生了深远的影响。基于Transformer的预训练模型,如GPT系列和BERT系列,已在多种任务上取得了卓越的成绩。目前的大型
    发表于 05-05 12:17

    【大语言模型:原理与工程实践】大语言模型的预训练

    语言模型的核心特点在于其庞大的参数量,这赋予了模型强大的学习容量,使其无需依赖微调即可适应各种下游任务,而更倾向于培养通用的处理能力。然而,随着学习容量的增加,对预训练数据的需求也相
    发表于 05-07 17:10

    【大语言模型:原理与工程实践】大语言模型的评测

    在知识获取、逻辑推理、代码生成等方面的能力。这些评测基准包括语言建模能力、综合知识能力、数学计算能力
    发表于 05-07 17:12

    【大语言模型:原理与工程实践】大语言模型的应用

    ,它通过抽象思考和逻辑推理,协助我们应对复杂的决策。 相应地,我们设计了两类任务来检验大语言模型能力。一类是感性的、无需理性能力的任务,类似于人类的系统1,如情感分析和抽取式问答
    发表于 05-07 17:21

    【《大语言模型应用指南》阅读体验】+ 俯瞰全书

    的机会! 本人曾经也参与过语音识别产品的开发,包括在线和离线识别,但仅是应用语言模型实现端侧的应用开发,相当于调用模型的接口函数,实际对模型
    发表于 07-21 13:35

    我们如何实现用语言智能

    DeepMind新年力作《学习和评估通用语言智能》,从全新的角度对跨任务NLP模型进行了评估,探讨了要实现“通用语言智能”现如今的研究还缺失什么,以及如何
    的头像 发表于 02-13 09:28 2319次阅读

    实现用语言智能我们还需要什么

    DeepMind新年力作《学习和评估通用语言智能》,从全新的角度对跨任务NLP模型进行了评估,探讨了要实现
    的头像 发表于 02-14 16:49 2058次阅读

    用语言模型技术创作人工智能音乐

    诸如 NVIDIA Megatron LM 和 OpenAI GPT-2 和 GPT-3 等语言模型已被用于提高人类生产力和创造力。具体而言,这些模型已被用作编写、编程和绘制的强大工具
    的头像 发表于 10-11 09:32 1012次阅读
    应<b class='flag-5'>用语言</b><b class='flag-5'>模型</b>技术创作人工智能音乐

    语言模型的发展历程 基于神经网络的语言模型解析

    简单来说,语言模型能够以某种方式生成文本。它的应用十分广泛,例如,可以用语言模型进行情感分析、标记有害内容、回答问题、概述文档等等。但理论上,语言
    发表于 07-14 11:45 877次阅读
    <b class='flag-5'>语言</b><b class='flag-5'>模型</b>的发展历程 基于神经网络的<b class='flag-5'>语言</b><b class='flag-5'>模型</b>解析

    什么是系统建模语言SysML?

    对复杂系统的建模是架构师的基础能力之一。从这篇文章开始,笔者介绍系统建模语言SysML(OMG System Modeling Language)。 对复杂系统的
    的头像 发表于 09-01 15:48 6925次阅读
    什么是系统<b class='flag-5'>建模</b><b class='flag-5'>语言</b>SysML?

    何用python实现RFM建模

    今天给大家分享的是如何用python实现RFM建模。 RFM模型的含义 RFM模型是衡量客户价值和客户创利
    的头像 发表于 11-02 10:36 871次阅读
    如<b class='flag-5'>何用</b>python<b class='flag-5'>实现</b>RFM<b class='flag-5'>建模</b>

    ESL事务级建模语言简介

    任何系统级建模语言,都需要具备在较高层次的抽象能力和对不同来源的IP的集成能力建模方法的选择通常基于
    的头像 发表于 11-02 15:10 733次阅读

    何用ADIsimADC完成ADC建模

    电子发烧友网站提供《如何用ADIsimADC完成ADC建模.pdf》资料免费下载
    发表于 11-28 10:36 2次下载
    如<b class='flag-5'>何用</b>ADIsimADC完成ADC<b class='flag-5'>建模</b>

    fpga通用语言是什么

    FPGA(现场可编程门阵列)的通用语言主要是指用于描述FPGA内部逻辑结构和行为的硬件描述语言。目前,Verilog HDL和VHDL是两种最为广泛使用的FPGA编程语言
    的头像 发表于 03-15 14:36 522次阅读