0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

什么是神经形态芯片

lPCU_elecfans 来源:电子发烧友网 作者:电子发烧友网 2022-09-05 09:23 次阅读

电子发烧友网报道(文/李弯弯)日前,一个国际研究团队设计并制造了一种直接在内存中运行计算的芯片,可运行各种AI应用,而且它能在保持高精度的同时,仅消耗通用AI计算平台所耗能量的一小部分,兼具高效率和通用性。相关研究发表在最近的《自然》杂志上。

这款名为NeuRRAM的神经形态芯片使AI距离在与云断开的广泛边缘设备上运行又近了一步。NeuRRAM芯片的能效不仅是目前最先进的“内存计算”芯片的两倍,而且它提供的结果也与传统数字芯片一样准确。

此外,NeuRRAM芯片具有高度的通用性,支持多种不同的神经网络模型和架构。因此,该芯片可用于许多不同的应用,包括图像识别和重建以及语音识别

什么是神经形态芯片?近年来,深度神经网络(DNN)取得了令人瞩目的成绩,基于DNN的深度学习AI芯片业成为市场主流,然而深度学习所基于的大脑模型,是极度简化了的大脑神经元及其连接电路,与人脑相比,他们在效率方面的表现仍然不够好。

而与之相比,模仿大脑结构的芯片具有更高的效率和更低的功耗,模仿大脑行为的神经网络被称为神经形态网络,其代表为脉冲神经网络(SNN),神经形态网络的特征是使用更忠实地模仿大脑行为的模型,其对应的芯片被称为神经形态芯片,也称类脑芯片。

目前国内外都有机构和企业在研究神经形态芯片,早在2011年IBM率先取得进展,不过因为技术限制,第一代TrueNorth芯片的性能并不高,2014年该公司推出了第二代TrueNorth芯片,加载了神经网络模型的TrueNorth芯片可作为实时感知流推理引擎使用。

2017年英特尔发布第一代神经拟态芯片Loihi,2021年9月30日发布第二代芯片Loihi 2,英特尔第二代芯片Loihi 2,除了神经拟态处理速度变得更快,在可编程性和容量方面也有很大提升,在功耗和时延受限的智能计算应用方面也更强大。

国内致力于该领域研究的主要是灵汐科技和时识科技。灵汐科技是一家类脑计算技术科技公司,发布了基于类脑芯片的类脑计算板卡和服务器、软件工具链和系统软件。灵汐科技的类脑芯片KA200,基于全新的存算一体、众核并行、异构融合架构,能高效支持深度学习神经网络、生物神经网络和大规模脑仿真

时识科技的技术起源于苏黎世大学与苏黎世联邦理工学院数模混合神经形态处理器与神经形态算法研发成果。该公司主要聚焦在端侧智能,目前已经发布的智能视觉SoC Speck,是一款针对视觉做的感算一体的SoC,以及低维度信号处理器XYLO,用于非视觉类的应用,包括压力、震动、温度、声音等识别和检测,做实时传感信号处理。

过去AI计算更多的还是在云端进行,因为AI计算既耗电又昂贵,边缘设备上的大多数AI应用程序都涉及将数据从设备移动到云端,AI在云端对其进行处理和分析,然后将结果移回设备。如今随着行业对低延迟、低功耗及数据隐私需求的增长,为了分担数据中心的计算压力,提高实时响应速度,人工智能在边缘侧的处理将成为一个关键增长领域。

而神经形态芯片低功耗、低延时的特性非常适合边缘侧应用,可以看到灵汐科技、时识科技等企业推出的芯片产品都聚焦于边缘/终端侧的应用,上述国际研究团队设计的NeuRRAM芯片的面世,也有利于带来更强大、更智能、更易于访问的边缘设备和更智能的制造。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    453

    文章

    50373

    浏览量

    421660
  • 神经网络
    +关注

    关注

    42

    文章

    4762

    浏览量

    100522
  • 服务器
    +关注

    关注

    12

    文章

    9014

    浏览量

    85168

原文标题:低功耗的神经形态芯片,适用于边缘AI应用

文章出处:【微信号:elecfans,微信公众号:电子发烧友网】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    TDK成功研发出用于神经形态设备的自旋忆阻器

    TDK公司宣布其已成功研发出一款超低能耗的神经形态元件--自旋忆阻器。通过模拟人脑高效节能的运行模式,该元件可将人工智能(AI)应用的能耗降至传统设备的百分之一。与法国研究机构原子能和替代能源
    的头像 发表于 10-14 11:00 380次阅读

    神经芯片的主要特点和优势

    神经芯片,又称神经芯片神经元网络芯片,是一种专为实现网络通信和控制功能而设计的先进半导体
    的头像 发表于 07-12 16:42 998次阅读

    神经元是什么?神经元在神经系统中的作用

    神经元,又称神经细胞,是神经系统的基本结构和功能单位。它们负责接收、整合、传导和传递信息,从而参与和调控神经系统的各种活动。神经元在
    的头像 发表于 07-12 11:49 926次阅读
    <b class='flag-5'>神经</b>元是什么?<b class='flag-5'>神经</b>元在<b class='flag-5'>神经</b>系统中的作用

    人工智能神经网络芯片的介绍

    人工智能神经网络芯片是一类专门为深度学习和神经网络算法设计的处理器。它们具有高性能、低功耗、可扩展等特点,广泛应用于图像识别、语音识别、自然语言处理等领域。以下是关于人工智能神经网络
    的头像 发表于 07-04 09:33 576次阅读

    神经网络芯片与传统芯片的区别和联系

    引言 随着人工智能技术的快速发展,深度学习算法在图像识别、自然语言处理、语音识别等领域取得了显著的成果。然而,深度学习算法对计算资源的需求非常高,传统的计算芯片已经无法满足其需求。因此,神经网络芯片
    的头像 发表于 07-04 09:31 705次阅读

    神经网络芯片和普通芯片区别

    神经网络芯片和普通芯片的区别是一个复杂而深入的话题,涉及到计算机科学、电子工程、人工智能等多个领域。 定义 神经网络芯片(Neural Ne
    的头像 发表于 07-04 09:30 894次阅读

    神经元的结构及功能是什么

    神经元是神经系统的基本结构和功能单位,它们通过电信号和化学信号进行信息传递和处理。神经元的结构和功能非常复杂,涉及到许多不同的方面。 一、神经元的
    的头像 发表于 07-03 11:33 1002次阅读

    神经元的基本作用是什么信息

    的作用。 一、神经元的结构 神经元是一种高度分化的细胞,具有独特的形态和功能。神经元的基本结构包括细胞体、树突和轴突。 细胞体:细胞体是神经
    的头像 发表于 07-03 11:29 758次阅读

    神经形态计算器件和阵列测试解决方案

    神经形态计算是一种新型的计算范式,它模仿生物神经网络(如人脑)的结构和功能以在为人工智能、机器学习、机器人和感官处理等各种应用实现高性能、低功耗和自适应学习能力。
    的头像 发表于 07-03 10:02 328次阅读
    <b class='flag-5'>神经</b><b class='flag-5'>形态</b>计算器件和阵列测试解决方案

    我国科研人员联合研发出一款新型类脑神经形态系统级芯片Speck

    6月1日,记者从中国科学院自动化研究所获悉,来自该所等单位的科研人员联合研发出一款新型类脑神经形态系统级芯片Speck。该芯片展示了类脑神经
    的头像 发表于 06-04 09:43 1.8w次阅读
    我国科研人员联合研发出一款新型类脑<b class='flag-5'>神经</b><b class='flag-5'>形态</b>系统级<b class='flag-5'>芯片</b>Speck

    英特尔推出Hala Point全球最大仿神经形态系统,解决AI效率问题

    英特尔实验室神经形态运算总监Mike Davies指出,“当前AI模型训练及部署成本增长迅速,行业亟需创新方法。因此,英特尔实验室研发了Hala Point,融合深度学习效率、类人脑持续学习和优化功能。
    的头像 发表于 04-23 10:00 437次阅读

    英特尔最大神经形态计算机研制成功

    英特尔公司最近成功研制出了世界上最大的神经形态计算机Hala Point,这一创新性的技术突破在人工智能领域引起了广泛关注。
    的头像 发表于 04-22 10:10 404次阅读

    英特尔研发新型神经形态计算机Hala Point,为AI发展注入新动力

    科学家对神经形态计算机抱有极高期望,因其采用人工神经元实现存储与运算功能,避免数据在组件间频繁传输,从而提高能源利用效率。
    的头像 发表于 04-19 15:47 330次阅读

    英特尔携手桑迪亚构建全球最庞大神经形态系统

    英特尔Loihi 2神经形态芯片体积微小,采用Intel 4工艺制造(除Meteor Lake外,目前唯一使用该工艺的芯片),面积仅31平方毫米,包含23亿个晶体管。
    的头像 发表于 04-18 15:17 291次阅读

    FPGA在深度学习应用中或将取代GPU

    ,也正积极的为其开发专用的 AI 硬件,用于自己的云产品和边缘计算产品环境中。 神经形态芯片 方面也有着一些发展,这是一种专门为神经网络设计的计算机架构。英特尔在
    发表于 03-21 15:19