0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

自动驾驶为什么一定要多传感器融合

是德科技KEYSIGHT 来源:是德科技KEYSIGHT 作者:是德科技KEYSIGHT 2022-09-21 15:00 次阅读

自动驾驶正成为影响未来行业的关键技术,车载传感器是自动驾驶系统中感知外部世界的关键,它们就像车辆的“眼耳口鼻”,帮助车辆感知外部世界,听觉视觉等缺一不可,这几种感知的协作性能也直接决定自动驾驶车辆的安全性。

今天我们就来一起聊聊,自动驾驶中的“眼耳口鼻”共用——多传感器融合是怎么一回事。

常见的车载传感器有哪些?

目前业界主要使用三种传感器,包括摄像头、激光雷达、毫米波雷达。各种传感器各有优缺点,因此在自动驾驶系统中通常有不同的任务划分。

摄像头可以获取光学图像,并从一定角度准确记录物体的颜色、纹理、色彩分布等信息。因此,一些研究使用摄像头完成目标识别和目标跟踪任务,包括道路检测、行人和车辆识别以及局部路径规划。为了克服摄像头可测量角度范围窄的问题,在实际应用中,自动驾驶系统通常采用多台摄像头对周围环境进行全方位监控。

毫米波雷达通过脉冲压缩测量物体的距离,并通过多普勒频移测量物体的速度,这在障碍物检测、行人识别和车辆识别中有广泛的应用。

激光雷达的主要应用包括定位、障碍物检测和环境重建。由于三维(3D)数据与二维数据相比具有一定的信息表示优势,它可以最大限度地恢复真实环境中的交通条件。结合毫米波雷达目标的动态特性、激光雷达的变化优势以及光学图像中目标的细节,利用综合信息有助于车辆执行各种任务,如意图分析、运动规划和自动驾驶。

为什么一定要多传感器融合呢?

使用多传感器融合技术的主要原因是为了扬长避短、冗余设计,提高整车安全系数。多传感器融合系统所实现的功能要远超这些独立系统能够实现的功能总和,相当于1+1>2。使用不同的传感器种类可以在某一种传感器全都出现故障的环境条件下,额外提供一定冗余度。这种错误或故障可能是由自然原因(例如,浓雾天气)或是人为现象(例如,对摄像头或雷达的电子干扰或人为干扰)导致。各传感器优缺点如下:

最远探测距离 探测
精度
优势 劣势
摄像头 50m 一般 •分辨率高
•能探测物体质地和颜色
• 成本低
•逆光或光影复杂情况效果差
•受恶劣天气影响
•受视野影响
毫米波雷达 250m 较高 •不受物体形状和颜色影响
•探测精度高,受环境影响小
•性价比高
•无法探测行人
激光雷达 200m 极高 •探测精度高
•可以绘制出3D环境地图
•成本高昂
•受不良天气影响较大

多传感器融合的挑战

目前市面上大多数自动驾驶的方案均包含摄像头、激光雷达和毫米波雷达,使用同一个系统来采集并处理数据,我们需要对这些传感器统一坐标系和时钟,目的就是为了实现三同一不同:即在同一时刻,同一地理坐标,同一目标出现在不同类别的传感器中。

想必看到这里,聪明的你能意识到,这也不是一件容易的事情,想要达到三同一不同,就要克服不少挑战。

挑战1:统一时钟

在这里要做的就是同步不同传感器的时间戳,本次我们主要介绍两种方法。

GPS时间戳的时间同步方法:该种方法中,传感器硬件需支持GPS时间戳,如果支持,则传感器输出的数据包会有全局的时间戳,这些时间戳以GPS为基准,那么就相当于不同的传感器均以GPS为基准,等同于使用了相同的时钟,而非传感器各自的时钟了。

另外一种方法叫硬同步方法:这种方法可以减小查找时间戳造成的误差。该方法可以以激光雷达作为触发源,输出给其它传感器,当激光雷达转到某个角度时,才触发该角度的摄像头,这可以大大减少时间差的问题。这套时间同步方案可以做到硬件中,这样可以大大降低同步误差,提高数据同步效果。

挑战2:统一坐标系

统一坐标系有两步,一是运动补偿,二是传感器标定。由于所有的传感器都装在车上,车是运动的刚体。因此传感器在采集数据时,周期开始的时间点和结束时间点车辆是处于不同位置的,导致不同时刻采集的数据所处坐标系不同,因此需要根据车体的运动对传感器采集的数据进行运动补偿。

传感器标定分为内参标定和外参标定,内参标定,解决的是单独的每个传感器与世界坐标系间的变换;外参标定是在世界坐标系下,解决的不同传感器间的变换。传感器外参校准依赖于传感器的精确内参校准。

挑战3:融合方法

经过以上几步,可以拿到的信息有:做好运动补偿及时间同步的传感器源数据、传感器内参、传感器外参,有了这些信息后,我们可以做相应的融合方法了。到底如何做呢?下面举两个例子:

摄像头和激光雷达融合:激光雷达数据是包含了明确的(x,y,z)数据的3D观测,通过标定参数与摄像头本身的内参,多传感器深度融合可以实现把3D点投到图像上,图像上的某些像素也就打上了深度信息,帮助感知系统进行基于图像的分割或者训练深度学习模型。

毫米波雷达和激光雷达融合:毫米波雷达和激光雷达的融合方式比较简单。在笛卡尔坐标系下,它们拥有完整的( x,y )方向的信息。因此在笛卡尔坐标系下,激光雷达和毫米波雷达可以实现基于距离的融合。另外,毫米波雷达还可以探测到障碍物速度,而激光雷达通过位置的追踪,也会得到对障碍物速度的估计,对这些速度的信息进行融合,更能帮助筛选错误的匹配候选集。

从目前国内对于自动驾驶的策略来看,多种传感器提高安全冗余是普遍采用的路线。那对于多传感器融合的硬件在环测试也是必要的一环。

讲了这么多,你对多传感器融合是否有了一些了解呢?针对这样的自动驾驶趋势,是德科技也在全面布局,不仅针对单个雷达有测试解决方案,对雷达场景模拟以及多传感器融合方向也在推陈出新,推出ADE(Autonomous Driving Emulation)解决方案以及发布不久的雷达场景模拟器。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2550

    文章

    51071

    浏览量

    753323
  • 摄像头
    +关注

    关注

    59

    文章

    4840

    浏览量

    95646
  • 激光雷达
    +关注

    关注

    968

    文章

    3971

    浏览量

    189878
  • 自动驾驶
    +关注

    关注

    784

    文章

    13804

    浏览量

    166426

原文标题:1+1>2? “眼耳口鼻”共用的自动驾驶系统

文章出处:【微信号:是德科技KEYSIGHT,微信公众号:是德科技KEYSIGHT】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    物联网中的传感器类型解析 传感器类型在自动驾驶中的应用

    物联网中的传感器类型解析及其在自动驾驶中的应用 传感器种检测装置,能感受到被测量的信息,并能将感受到的信息按一定规律变换成为电信号或其他
    的头像 发表于 12-06 14:15 356次阅读

    传感器融合自动驾驶中的应用趋势探究

    整合分析,传感器融合不仅能够弥补单一传感器的局限性,还大大提升了感知系统的精确性。   智能驾驶传感器
    的头像 发表于 12-05 09:06 306次阅读
    <b class='flag-5'>多</b><b class='flag-5'>传感器</b><b class='flag-5'>融合</b>在<b class='flag-5'>自动驾驶</b>中的应用趋势探究

    文聊聊自动驾驶测试技术的挑战与创新

    ,包括场景生成的多样性与准确性、传感器数据融合的精度验证、高效的时间同步机制,以及仿真平台与实际场景的匹配等问题。 自动驾驶测试的必要性与现状 1.1
    的头像 发表于 12-03 15:56 171次阅读
    <b class='flag-5'>一</b>文聊聊<b class='flag-5'>自动驾驶</b>测试技术的挑战与创新

    FPGA在自动驾驶领域有哪些优势?

    领域的主要优势: 高性能与并行处理能力: FPGA内部包含大量的逻辑门和可配置的连接,能够同时处理多个数据流和计算任务。这种并行处理能力使得FPGA在处理自动驾驶中复杂的图像识别、传感器数据处理等
    发表于 07-29 17:11

    FPGA在自动驾驶领域有哪些应用?

    低,适合用于实现高效的图像算法,如车道线检测、交通标志识别等。 雷达和LiDAR处理:自动驾驶汽车通常会使用雷达和LiDAR(激光雷达)等多种传感器来获取环境信息。FPGA能够协助完成这些传感器
    发表于 07-29 17:09

    自动驾驶识别技术有哪些

    自动驾驶的识别技术是自动驾驶系统中的重要组成部分,它使车辆能够感知并理解周围环境,从而做出智能决策。自动驾驶识别技术主要包括多种传感器及其融合
    的头像 发表于 07-23 16:16 649次阅读

    自动驾驶传感器技术介绍

    自动驾驶传感器技术是自动驾驶系统的核心组成部分,它使车辆能够感知并理解周围环境,从而做出智能决策。以下是对自动驾驶传感器技术的详细介绍,内
    的头像 发表于 07-23 16:08 2269次阅读

    自动驾驶汽车传感器有哪些

    自动驾驶汽车传感器是实现自动驾驶功能的关键组件,它们通过采集和处理车辆周围环境的信息,为自动驾驶系统提供必要的感知和决策依据。以下是对自动驾驶
    的头像 发表于 07-23 16:00 2300次阅读

    XV7181BB 陀螺仪传感器自动驾驶设备中的应用

    输出、宽工作温度范围和优异的温度偏置稳定性,为自动驾驶设备在各种复杂驾驶环境中的稳定运行提供了强大的支持。其低功耗设计和内置的温度传感器、数字滤波,进
    的头像 发表于 06-13 15:23 481次阅读
    XV7181BB 陀螺仪<b class='flag-5'>传感器</b>在<b class='flag-5'>自动驾驶</b>设备中的应用

    揭秘自动驾驶:未来汽车的感官革命,究竟需要哪些超级传感器

    来源:LANCI澜社汽车,谢谢 编辑:感知芯视界 Link 随着自动驾驶技术的发展,我们已进入个技术瓶颈期。在这背景下,汽车制造商开始将注意力转向自动驾驶的关键组成部分——
    的头像 发表于 05-31 09:14 592次阅读

    自动驾驶:揭秘高精度时间同步技术(

    本文重点探讨了高精度时间同步技术在传感器融合中的重要性。通过选择统的时钟源和基于以太网的协议,确保
    的头像 发表于 05-29 10:40 4976次阅读
    <b class='flag-5'>自动驾驶</b>:揭秘高精度时间同步技术(<b class='flag-5'>一</b>)

    康谋技术 |深入探讨:自动驾驶中的相机标定技术

    随着自动驾驶技术的快速发展,传感器的数据采集和融合可以显著提高系统的冗余度和容错性,进而保证决策的快速性和正确性。在项目开发迭代过程中,传感器
    的头像 发表于 04-17 17:08 900次阅读
    康谋技术 |深入探讨:<b class='flag-5'>自动驾驶</b>中的相机标定技术

    未来已来,传感器融合感知是自动驾驶破局的关键

    驾驶的关键的是具备人类的感知能力,传感器融合感知正是自动驾驶破局的关键。昱感微的雷视
    发表于 04-11 10:26

    康谋技术 | 自动驾驶传感器数据融合方法

    现象进行观测,采集的数据构成被测对象的模态信息。模态信息可以实现不同传感器之间数据互补,并在相同学习任务获取更丰富的特征,从而实现比单模态更好的性能。 在
    的头像 发表于 01-24 18:02 576次阅读
    康谋技术 | <b class='flag-5'>自动驾驶</b><b class='flag-5'>多</b><b class='flag-5'>传感器</b>数据<b class='flag-5'>融合</b>方法

    虹科方案丨L2进阶L3,数据采集如何助力自动驾驶

    技术方案上,宝马的自动驾驶研究直坚持传感器融合的方式,其L3级自动驾驶技术套件能够集成更多高
    的头像 发表于 12-27 13:29 448次阅读
    虹科方案丨L2进阶L3,数据采集如何助力<b class='flag-5'>自动驾驶</b>