0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于卷积多层感知器(MLP)的图像分割网络unext

lhl545545 来源:CVer 作者:CVer 2022-09-27 15:12 次阅读

1. 摘要

UNet及其最新的扩展如TransUNet是近年来领先的医学图像分割方法。然而,由于这些网络参数多、计算复杂、使用速度慢,因此不能有效地用于即时应用中的快速图像分割。为此,我们提出了一种基于卷积多层感知器(MLP)的图像分割网络unext。我们设计了一种有效的UNeXt方法,即在前期采用卷积阶段和在后期采用MLP阶段。我们提出了一个标记化的MLP块,在该块中,我们有效地标记和投射卷积特征,并使用MLP来建模表示。

为了进一步提高性能,我们建议在输入mlp时shift输入的channel,以便专注于学习局部依赖性。在潜在空间中使用标记化的mlp减少了参数的数量和计算复杂度,同时能够产生更好的表示,以帮助分割。该网络还包括各级编码器和解码器之间的跳跃连接。测试结果表明,与目前最先进的医学图像分割架构相比,UNeXt的参数数量减少了72x,计算复杂度降低了68x,推理速度提高了10x,同时也获得了更好的分割性能。

2. 网络结构

2.1 网络设计:

UNeXt是一个编码器-解码器体系结构,有两个阶段:

1) 卷积阶段

2) tokenized MLP阶段。

输入图像通过编码器,其中前3个块是卷积,下2个是tokenized MLP块。解码器有2个tokenized MLP块,后面跟着3个卷积块。每个编码器块减少特征分辨率2倍,每个解码器块增加特征分辨率2。跳跃连接也被应用在了编码器和解码器之间

a82f13d8-3e2d-11ed-9e49-dac502259ad0.png

作者减少了每个stage的通道数。

每个stage的通道数,对比标准的Unet:

UNeXt:32 64 128 160 256

UNet:64 128 256 512 1024

在这里面就减少了很多的参数量

2.2 卷积阶段

有三个conv block,每个block都有一个卷积层(传统Unet是两个)、批量归一化层和ReLU激活。我们使用的内核大小为3×3, stride为1,padding为1。编码器的conv块使用带有池窗口2×2的max-pooling层,而解码器的conv块使用双线性插值层对特征图进行上采样。我们使用双线性插值而不是转置卷积,因为转置卷积基本上是可学习的上采样,会导致产生更多可学习的参数

2.3 Shifted MLP

在shifted MLP中,在tokenize之前,我们首先移动conv features通道的轴线。这有助于MLP只关注conv特征的某些位置,从而诱导块的位置。这里的直觉与Swin transformer类似,在swin中引入基于窗口的注意,以向完全全局的模型添加更多的局域性。由于Tokenized MLP块有2个mlp,我们在一个块中跨越宽度移动特征,在另一个块中跨越高度移动特征,就像轴向注意力中一样。我们对这些特征做了h个划分,并根据指定的轴通过j个位置移动它们。这有助于我们创建随机窗口,引入沿轴线的局部性。

a844412c-3e2d-11ed-9e49-dac502259ad0.jpgShift操作

图中灰色是特征块的位置,白色是移动之后的padding。

2.4 Tokenized MLP阶段

a84ccf7c-3e2d-11ed-9e49-dac502259ad0.jpgimage-20220402001733482

在Tokenized MLP块中,我们首先shift features并将它们投射到token中。为了进行token化,我们首先使用3x3conv把特征投射到E维,其中E是embadding维度(token的数量),它是一个超参数。然后我们将这些token传递给一个shifted MLP(跨越width)。接下来,特征通过 DW-Conv传递。然后我们使用GELU激活层。然后,我们通过另一个shifted MLP(跨越height)传递特征,该mlp把特征的尺寸从H转换为了O。我们在这里使用一个残差连接,并将原始标记添加为残差。然后我们利用layer norm(LN),并将输出特征传递到下一个块。LN比BN更可取,因为它更有意义的是沿着token进行规范化,而不是在Tokenized MLP块的整个批处理中进行规范化。

我们在这个块中使用DWConv有两个原因:

1)它有助于编码MLP特征的位置信息。从中可以看出,在一个MLP块中Conv层已经足够对位置信息进行编码,并且实际性能优于标准的位置编码技术。当测试或者训练分辨率不相同时,像ViT中的位置编码技术需要插值,这通常会导致性能下降。

2)DWConv使用更少的参数,因此提高了效率。

Tokenized block的计算流程

a8691240-3e2d-11ed-9e49-dac502259ad0.png

所有这些计算都是在嵌入维数h上执行的,这个维数明显小于特征的维数 (H/N)×(H/N) ,N是关于降维的2的因子。在我们的实验中,除非另有说明,否则我们使用768。这种设计tokenized MLP block的方法有助于编码有意义的特征信息,而不会对计算或参数贡献太多。

3.实验结果

在ISIC和BUSI数据集进行了实验

a893c472-3e2d-11ed-9e49-dac502259ad0.png

在ISIC数据集的对比

a8ba4e80-3e2d-11ed-9e49-dac502259ad0.png

a8cea394-3e2d-11ed-9e49-dac502259ad0.png

a8eecce6-3e2d-11ed-9e49-dac502259ad0.png

4. 个人感悟

首先每个convolutional阶段只有一个卷积层,极大的减少了运算量,是答主第一次见了。

其次是把MLP的模块引入了Unet,算是很新颖了。

在Tokenized MLP block中使用DW- CONV,让人眼前一亮。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 解码器
    +关注

    关注

    9

    文章

    1129

    浏览量

    40670
  • 图像分割
    +关注

    关注

    4

    文章

    182

    浏览量

    17970
  • 感知器
    +关注

    关注

    0

    文章

    34

    浏览量

    11830
  • MLP
    MLP
    +关注

    关注

    0

    文章

    57

    浏览量

    4226

原文标题:MICCAI 2022 | UNeXt:第一个基于卷积和MLP的快速医学图像分割网络

文章出处:【微信号:CVer,微信公众号:CVer】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    使用全卷积网络模型实现图像分割

    OpenCv-C++-深度神经网络(DNN)模块-使用FCN模型实现图像分割
    发表于 05-28 07:33

    如何使用Keras框架搭建一个小型的神经网络多层感知器

    本文介绍了如何使用Keras框架,搭建一个小型的神经网络-多层感知器,并通过给定数据进行计算训练,最好将训练得到的模型提取出参数,放在51单片机上进行运行。
    发表于 11-22 07:00

    基于MLP的快速医学图像分割网络UNeXt相关资料分享

    缓慢。这篇文章提出了基于卷积多层感知器MLP)改进 U型架构的方法,可以用于图像分割。设计了一
    发表于 09-23 14:53

    一文详解CNN

    识别、语音识别等场景取得巨大的成功。 CNN的发展史: 提到CNN的发展史,就要提到多层感知器(Multi-Layer Perception, MLP)。(图片来源于3Blue1Brown)
    发表于 08-18 06:56

    人工神经网络在金相图像分割中的应用研究

    摘要: 利用多层感知器神经网络和自组织映射神经网络对球墨铸铁、可锻铸铁和灰铸铁的金相图像进行了分割
    发表于 03-12 16:27 25次下载
    人工神经<b class='flag-5'>网络</b>在金相<b class='flag-5'>图像</b><b class='flag-5'>分割</b>中的应用研究

    人工智能–多层感知器基础知识解读

    感知器(Perceptron)是ANN人工神经网络的一个概念,由Frank Rosenblatt于1950s第一次引入。 MLP多层感知器
    发表于 07-05 14:45 6079次阅读

    聚焦语义分割任务,如何用卷积神经网络处理语义图像分割

    同一对象。作者将沿着该领域的研究脉络,说明如何用卷积神经网络处理语义图像分割的任务。 更具体地讲,语义图像
    发表于 09-17 15:21 554次阅读

    卷积网络FCN进行图像分割

    Networks for Semantic Segmentation》在图像语义分割挖了一个坑,于是无穷无尽的人往坑里面跳。 全卷积网络 Fully Convolutional Ne
    发表于 09-26 17:22 612次阅读

    多层感知机(MLP)的设计与实现

    多层感知机(Multilayer Perceptron)缩写为MLP,也称作前馈神经网络(Feedforward Neural Network)。它是一种基于神经
    的头像 发表于 03-14 11:31 6638次阅读
    <b class='flag-5'>多层</b><b class='flag-5'>感知</b>机(<b class='flag-5'>MLP</b>)的设计与实现

    PyTorch教程5.2之多层感知器的实现

    电子发烧友网站提供《PyTorch教程5.2之多层感知器的实现.pdf》资料免费下载
    发表于 06-05 15:32 0次下载
    PyTorch教程5.2之<b class='flag-5'>多层</b><b class='flag-5'>感知器</b>的实现

    使用多层感知器进行机器学习

    我们将使用一个极其复杂的微处理来实现一个神经网络,该神经网络可以完成与由少数晶体管组成的电路相同的事情,这个想法有些幽默。但与此同时,以这种方式思考这个问题强调了单层感知器作为一般分
    的头像 发表于 06-24 11:17 522次阅读
    使用<b class='flag-5'>多层</b><b class='flag-5'>感知器</b>进行机器学习

    卷积神经网络算法有哪些?

    卷积神经网络算法有哪些?  卷积神经网络(Convolutional Neural Network, CNN) 是一种基于多层
    的头像 发表于 08-21 16:50 1555次阅读

    深度神经网络模型有哪些

    模型: 多层感知器(Multilayer Perceptron,MLP): 多层感知器是最基本的深度神经
    的头像 发表于 07-02 10:00 1138次阅读

    多层感知器、全连接网络和深度神经网络介绍

    多层感知器MLP)、全连接网络(FCN)和深度神经网络(DNN)在神经网络领域中扮演着重要角色
    的头像 发表于 07-11 17:25 3000次阅读

    多层感知器的基本原理

    多层感知器MLP, Multi-Layer Perceptron)是一种前馈神经网络,它通过引入一个或多个隐藏层来扩展单层感知器的功能,从
    的头像 发表于 07-19 17:20 665次阅读