自动驾驶对大算力芯片提出了新的挑战。传统汽车以控制为主,算力要求很小,而 L4 级别的自动驾驶就要求 1000T 以上的算力,不仅如此,汽车端的供电和散热能力也对芯片的低功耗提出了新需求。
就在前几日,英伟达发布了旗下的新一代自动驾驶计算芯片 DRIVE Thor,主要升级了汽车的中央计算架构,采用了新发布的 40 系显卡的 4nm 制程架构,算力达到 2000 TOPS,是此前发布的 Altan 的 2 倍,是 Orin 的 8 倍,这也将芯片「算力大战」推上新高度。
但是对于被「卡脖子」的国产芯片厂商来说,想要参与这场「算力大战」,显然无法指望依靠制程工艺去实现芯片算力的提升。
在后摩智能创始人 & CEO 吴强看来:存算一体可能是国产芯片算力弯道超车的机会。传统计算机的「冯·诺伊曼架构」里计算单元与存储单元是分离的,数据在两者间进行传输非常耗时耗能,产生所谓的「存储墙问题」。而「存算一体」架构能够整合计算单元和存储单元,优化数据传输路径,提高芯片算力天花板。在缩短系统响应时间的同时,也在能效比上带来了数量级的提升。
也就是说,这种创新计算架构对工艺的依赖较弱,能用 28nm 工艺做出基于传统计算架构的其他 AI 芯片用 7nm,甚至 5nm 工艺才能实现的性能或者能效比。更适合自动驾驶、泛机器人等边缘端算力的需求场景。
于是,前 AMD 的 GPGPU / OpenCL 创始团队核心成员、Facebook 总部资深科学家吴强,毅然选择带着团队采取了颠覆性的存算一体的架构,希望能在后摩尔时代,提供大算力、低功耗的高能效比芯片及解决方案,突破未来生活所需要的大算力瓶颈。
编辑:黄飞
-
自动驾驶
+关注
关注
784文章
13784浏览量
166382 -
国产芯片
+关注
关注
2文章
248浏览量
29684 -
存算一体
+关注
关注
0文章
102浏览量
4297
原文标题:直播预告|大算力时代,中国自动驾驶芯片的机遇
文章出处:【微信号:后摩智能,微信公众号:后摩智能】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论