在近日举行的 GTC 大会上,蔚来 AI 平台负责人白宇利带来非常有价值的分享,他首次对外透露了蔚来自研的全栈式自动驾驶系统(NAD)的部署和开发情况,同时也将蔚来自动驾驶研发平台(NADP)这个神秘的“Peta Factory”带到了公众视野中。
据了解,NADP是服务于蔚来自动驾驶核心业务方向的研发平台,用于开发 NAD 功能。以“Peta”为名是因为每辆车每天能生成 55 petabit数据(1 petabit = 10^6 gigabit = 10^9 megabit = 10^15 bits),而 NADP 是所有流程、工作流、数据以及底层软硬件的组合。NADP 能够以一站式平台管理大量复杂的 AI 应用,并将模型开发效率提高 20 倍,从而缩短自动驾驶汽车的上市周期,开发出更新、更快的架构。
在模型训练、测试和部署的过程中,为了确保新改进能够切实地解决相应问题,且不会引发任何新问题, NADP 需要执行 10 万项推理任务,包括数据挖掘、仿真和回归测试。经过众多方案的对比和筛选,蔚来选用了NVIDIA Triton 推理服务器作为核心组件,构建了 NADP 的高性能推理服务。
正如白宇利在分享中提到:“我们基于 NVIDIA Triton 推理服务器构建了高性能推理服务。此服务非常适用于 NADP,并可轻松集成模型仓库、工作流、Jupyter、Prometheus 和许多其他组件,从而简化 AI 推理。Triton 让编排和扩展变得更轻松,还能将推理速度提高至 6 倍,并可节省 24% 的资源。”
蔚来基于 NVIDIA Triton 搭建的推理服务平台,在数据挖掘业务场景下,通过服务器端模型前处理和多模型 DAG 式编排,GPU 资源平均节省 24%;在部分核心 pipeline 上,吞吐能力提升为原来的 5 倍,整体时延降低为原来的 1/ 6。
Triton 在设计之初,就融入了云原生的设计思路,为后面逐步围绕 Triton 搭建完整的云原生平台性推理解决方案提供了相当大的便利。
作为 NADP 推理平台的核心组件,Triton 与 NADP 的各个组件形成了一套完整的推理一站式解决方案。从集成效率、高性能、易用性、高可用四方面,在 NADP 推理平台中提供助力。
目前,NADP 数据挖掘业务下的相关模型预测服务已经全部迁移至 Triton 推理服务器,为上百个模型提供了高吞吐预测能力。同时在某些任务基础上,通过自实现前处理算子、前后处理服务化、BLS 串联模型等手段,将一些模型任务合并起来,极大的提升了处理效率。
审核编辑:汤梓红
-
NVIDIA
+关注
关注
14文章
4994浏览量
103159 -
自动驾驶
+关注
关注
784文章
13838浏览量
166529 -
蔚来
+关注
关注
1文章
481浏览量
14563
原文标题:成功案例:蔚来 NADP + NVIDIA Triton,搭建稳定高效的推理平台
文章出处:【微信号:NVIDIA_China,微信公众号:NVIDIA英伟达】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论