0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

自动驾驶感知技术的研究

牵手一起梦 来源:智驾最前沿 作者:智驾最前沿 2022-10-09 17:54 次阅读

感知是什么?

自动驾驶赛道中,感知的目的是为了模仿人眼采集相关信息,为后续做决策提供必要的信息。根据所做决策的任务不同,感知可以包括很多子任务:如车道线检测、3D目标检测、障碍物检测、红绿灯检测等等;再根据感知预测出的结果,完成决策;最后根据决策结果执行相应的操作(如变道、超车等);

如何进行感知?

由于感知是为了模仿人眼获取周围的环境信息,那就必然需要用到传感器来完成信息的采集工作;目前在自动驾驶领域中用到的传感器包括:摄像头(camera)、激光雷达(lidar)、毫米波雷达(radar)等;

baf8a604-4301-11ed-96c9-dac502259ad0.jpg

可以看到传感器的种类众多且成本参差不齐,所以如何使用这些传感器进行感知任务,各个自动驾驶厂商都有各自的解决方案;纯视觉的感知方案目前Tesla是纯视觉感知方案的典型代表; 纯视觉感知方案的优缺点也很明显:优点:价格成本很低;缺点:摄像头采集到的图片是2D的,缺少深度信息,深度信息需要靠算法学习得到,缺少鲁棒性;传感器融合的感知方案目前大多数厂商采用的都是多传感器融合的解决方案;其优缺点是:优点:能够充分利用不同工作原理的传感器,提升对不同场景下的整体感知精度,也可以在某种传感器出现失效时,其他传感器可以作为冗余备份,提高系统的鲁棒性;缺点:由于采用多种传感器价格相比纯视觉高很多;传感器后融合所谓后融合,是指各传感器针对目标物体单独进行深度学习模型推理,从而各自输出带有传感器自身属性的结果;每种传感器的识别结果输入到融合模块,融合模块对各传感器在不同场景下的识别结果,设置不同的置信度,最终根据融合策略进行决策。 整体流程图如下:

bb0e47de-4301-11ed-96c9-dac502259ad0.jpg

优点:不同的传感器都独立进行目标识别,解耦性好,且各传感器可以互为冗余备份;同时后融合方案便于做标准的模块化开发,把接口封装好,提供给主机厂“即插即用”;对于主机厂来说,每种传感器的识别结果输入到融合模块,融合模块对各传感器在不同场景下的识别结果,设置不同的置信度,最终根据融合策略进行决策。 缺点:存在“时间上的感知不连续”及“空间上的感知碎片化”空间上的感知碎片化由于车身四周的lidar、camera角度的安装问题,多个传感器实体无法实现空间域内的连续覆盖和统一识别,导致摄像头只捕捉到了目标的一小部分,无法根据残缺的信息作出正确的检测结果,从而使得后续的融合效果无法保证。时间上的感知不连续摄像头采集到的结果是以帧为单位的,常用的感知方法是把连续单帧的检测结果串联起来,类似后融合的策略,无法充分利用时序上的有用信息。传感器前融合所谓前融合,是将各个传感器采集到的数据汇总到一起,经过数据同步后,对这些原始数据进行融合。 整体流程图如下:

bb392dc8-4301-11ed-96c9-dac502259ad0.jpg

优点:让数据更早的做融合,使数据更有关联性;比如把激光雷达的点云数据和摄像头的像素级数据进行融合,数据的损失也会比较少。 缺点:由于不同传感器获取的数据(摄像图获取的像素数据以及激光雷达获取的点云数据),其坐标系是不同的;视觉数据是2D空间,而激光雷达的点云数据是3D空间。所以在异构数据的融合时,有两种途径:途径一:在图像空间利用点云数据提供深度信息;途径二:在点云空间利用视觉数据提供语义特征,进行点云染色或特征渲染;

所以为了保证将不同坐标系下的数据(像素数据、点云数据)转换到同一坐标系下进行数据融合方便后续的感知任务,BEV(Bird Eye View)视角下的感知逐渐受到广泛的关注。传感器中融合所谓中融合,就是先将各个传感器采集到的数据通过神经网络提取数据的特征,再对神经网络提取到的多种传感器特征进行特征级的融合,从而更有可能得到最佳感知结果。对异构数据提取到的特征在BEV空间进行特征级的融合,一来数据损失少,二来算力消耗也较少(相对于前融合),所以针对BEV视角下的感知任务,采用中融合的策略比较多。

BEV视角下的感知任务范式

将摄像头数据(2D图片)输入到特征提取网络中完成多个摄像头数据的特征提取;

将所有摄像头数据提取到的特征通过网络学习的方式映射到BEV空间下;

在BEV空间下,进行异构数据的融合,将图像数据在BEV空间下映射的特征与激光雷达点云特征进行融合;(可选,如BEVFormer仅用6个摄像头构建BEV空间特征)

进行时序融合,融合前几个时刻的特征,增强感知能力;(个人认为:引入时序特征后可以在一定程度上解决遮挡问题)

根据获得到BEV特征,用于下游任务;(车道线检测、障碍物检测、3D目标检测等子任务,相当于整个模型是一个多任务学习模型)

BEV视角下的感知具有的优势

跨摄像头融合和异构数据融合更容易实现

跨摄像头融合或者异构数据进行融合时,由于不同数据其表示的坐标系不同,需要用很多后处理规则去关联不同传感器的感知结果,流程非常复杂。在BEV空间内做融合后,通过网络自主学习映射规则,产生BEV特征用于感知下游任务,算法实现更加简单,并且BEV空间内视觉感知到的物体大小和朝向也都能直接得到表达。

时序融合更容易实现

在构建BEV空间时,可以很容易地融合时序信息,使得获取的BEV特征可以更好地实现下游的一些感知任务,如测速任务。

一定程度上缓解感知任务中的遮挡问题

传统的2D感知任务只能感知看得见的目标,对于遮挡完全无能为力,而在BEV空间内,可以基于先验知识或者利用时序融合,对被遮挡的区域进行预测,从而“脑补”出被遮挡区域可能存在物体。虽然“脑补”出的物体,有一定“想象”的成分,但这对于下游的规控模块仍有很多好处。

方便多任务学习

使用传统方法做感知任务时,需要依次做目标识别、追踪和运动预测,更像是个“串行系统”,上游的误差会传递到下游从而造成误差累积;而在BEV空间内,感知和运动预测在统一空间内完成,因而可以通过神经网络直接做端到端优化,“并行”出结果,这样既可以避免误差累积,也大大减少了人工逻辑的作用,让感知网络可以通过数据驱动的方式来自学习,从而更好地实现功能迭代。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2552

    文章

    51217

    浏览量

    754611
  • 自动驾驶
    +关注

    关注

    784

    文章

    13856

    浏览量

    166590

原文标题:一文聊聊自动驾驶感知技术

文章出处:【微信号:谈思实验室,微信公众号:谈思实验室】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    未来已来,多传感器融合感知自动驾驶破局的关键

    技术 ,摄像头和雷达等多传感器的探测数据 在前端(数据获取时)交互验证,让自动驾驶系统能感知到“看不见”的危险。 例如,在反向车道有强远光灯干扰的情况下,当雷达子系统探测到潜在运动目标时,融合
    发表于 04-11 10:26

    FPGA在自动驾驶领域有哪些应用?

    是FPGA在自动驾驶领域的主要应用: 一、感知算法加速 图像处理:自动驾驶中需要通过摄像头获取并识别道路信息和行驶环境,这涉及到大量的图像处理任务。FPGA在处理图像上的运算速度快,可并行性强,且功耗
    发表于 07-29 17:09

    汽车自动驾驶技术

    请问各位老鸟我是新手汽车自动驾驶技术是怎么回事,是用什么板子开发的需要应用哪些技术和知识。提问题提得不是很好请各位见谅
    发表于 04-14 20:44

    自动驾驶真的会来吗?

    包含目前大家都积极研究的ADAS技术,主要有前车碰撞报警、盲点监测、车道偏离报警以及自动泊车等。  这个级别的自动驾驶技术与Google等企
    发表于 07-21 09:00

    自动驾驶的到来

      传统汽车厂商更趋向于通过技术的不断积累,场景的不断丰富,逐步从辅助驾驶过渡到半自动驾驶,进而在将来最终实现无人驾驶;某些高科技公司则希望通过各种外部传感器实时采集海量数据,处理器经
    发表于 06-08 15:25

    即插即用的自动驾驶LiDAR感知算法盒子 RS-Box

    他厂家激光雷达的组合使用。RS-LiDAR-32全球首个高线束激光雷达系统供应商激光雷达感知应用领域人才和算法稀缺,对于大部分开发高级自动驾驶技术团队来说,必须在激光雷达环境感知方面投
    发表于 12-15 14:20

    UWB主动定位系统在自动驾驶中的应用实践

    周边对其安全行驶可能存在隐患的物体,为车辆的行为决策和路径规划提供可靠的信息源。随着自动驾驶热潮,众多企业涌入环境感知技术产品的研究,目前已取得阶段性进展。但成本过高、
    发表于 12-14 17:30

    如何让自动驾驶更加安全?

    测试时,在有行人穿行的马路,就要求从每小时20公里的低速开始进行路测。从测试数据看,交通拥堵时的并线问题是目前自动驾驶最大的难题。中国汽车技术研究中心有限公司副总经理李洧说,自动驾驶的路测一定
    发表于 05-13 00:26

    智能感知方案怎么帮助实现安全的自动驾驶

    未来,自动驾驶将不再是科幻电影里的桥段,这是未来汽车的一个趋势,感知自动驾驶的重要组成部分,同时安全性至关重要。作为全球第7大汽车半导体供应商,安森美半导体提供全面的智能感知方案,包
    发表于 07-31 07:11

    自动驾驶汽车中传感器的分析

    特斯拉在五月份发生的自动驾驶事故,和最近在Defcon上演示的如何干扰传感器,都充分说明了传感器在自动驾驶中的重要性:环境感知自动驾驶实现的基础,如果不能正确地
    发表于 05-14 07:34

    联网安全接受度成自动驾驶的关键

    随着时代的演进与汽车工业技术、机器视觉系统、人工智能和传感器相关技术上不断创新与进步,无人自动驾驶汽车已不是一件遥不可及的梦想,Google与国际车厂相继针对自动驾驶
    发表于 08-26 06:45

    UWB定位可以用在自动驾驶

    ,为车辆的行为决策和路径规划提供可靠的信息源。随着自动驾驶热潮,众多企业涌入环境感知技术产品的研究,目前已取得阶段性进展。但成本过高、技术
    发表于 11-18 14:15

    基于视觉的slam自动驾驶

    基于视觉的slam自动驾驶,这是我们测试的视频《基于slam算法的智能机器人》调研分析报告项目背景分析机器人曾经是科幻电影中的形象,可目前已经渐渐走入我们的生活。机器人技术以包含机械、电子、自动
    发表于 08-09 09:37

    汽车自动驾驶产业链深度研究报告:自动驾驶驶向何方 精选资料分享

    L2.5 和 L4 级别 自动驾驶汽车渗透率分别将达 70%和 18%。从产业链上看,仅上游(感知层、传输层、决策层、执行层)和中游平台层,到 2025 年新增市场空间达 3088 亿元,2030 年
    发表于 08-27 07:21

    自动驾驶技术的实现

    的带宽有了更高的要求。从而使用以太网技术及中央域控制(Domain)和区域控制(Zonal)架构是下一代车载网络的发展方向。然而对于自动驾驶技术的实现,涉及到感知、规划、执行三个层面。
    发表于 09-03 08:31