0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于虚拟结构的机器人编队控制方法

新机器视觉 来源:古月居 作者:古月居 2022-10-10 17:39 次阅读

简介

目前,实现多 AUV 系统编队航行的控制方法主要包括基于领航者-跟随者的方法。

基于虚拟结构的方法、基于人工势场的方法、基于行为的方法和基于路径跟随的方法等。

基于领航者跟随者的编队控制方法

领航者-跟随者的概念最早由 Cruz提出,并且由 Wang等将其成功应用于移动机器人的编队控制中。

作为目前最为常用的一种编队控制方法,其基本思想是:所有编队成员被指定为领航者或跟随者这两种角色,领航者通过沿着预定或者临时设定的路径航行。

掌控整个编队的运动趋势,跟随者依据相对于领航者的距离及方位信息跟随领航者实现编队控制。

领航者-跟随者方法的优点是编队控制结构简单,易于实现,编队中只需要设定领航者的期望路径或其他行为,然后跟随者以预定的位置偏移跟随领航者即可实现编队控制。

鉴于这个原因,领航者-跟随者方法在实际工程中被广泛应用。该方法的缺点为编队系统过于依赖领航者。

基于虚拟结构的编队控制方法

虚拟结构法最早由 Tan提出,该方法将编队的所有成员视作一个整体进行处理,其基本思想为:首先确定虚拟结构的运动学和动力学特性。

然后推导出虚拟结构上虚拟目标点的相应特性,最后通过设计适当控制律使机器人跟踪对应虚拟目标点,实现编队控制。

虚拟结构法的优点在于,通过将编队队形视作一个刚性结构,系统有明显的队形反馈,便于编队行为的确定和队形的保持。

其缺点也很明显,由于编队队形需要一直保持同一个刚性结构,缺乏灵活性和适应性,尤其是在躲避障碍物过程中存在一定的局限性。

另外,不同的机器人在环境下会受到不同环境因素影响,严格的队形约束会诱发频繁控制指令,增加能耗,甚至出现执行器饱和现象。

这些缺点导致虚拟结构法在多机器人编队控制中的应用相对较少。

基于人工势场的编队控制方法

人工势场的概念由 Khatib 提出并成功应用于移动机器人避障控制中。所谓人工势场法即为研究对象的工作空间设定人工势场。

并为研究对象设定人工势函数,以此构造工作空间中机器人、目标点、以及障碍物等的势场力,通过最小化个体势场达到编队控制的目的。

人工势场法的优点在于其设计的算法能够较好的解决避碰避障问题;

缺点表现在当势力场较多时容易导致机器人出现小范围往复运动,增大能耗,另外合适势函数的选取也比较困难。

优点:

实时性强;

这是人工势能场法最大的优点,人工势能场法仅仅需要计算下一时刻的智能

体的即可,不需要全局信息,因此其实时性强,在线计算能力强;

突防突发威胁能力强;

针对突发威胁,当威胁所在的位置在智能体的可视范围内,智能体将模拟出突发威胁对智能体本身的斥力,使之有能力避开此威胁障碍物。

在突发威胁不在智能体的可视范围内,则智能体忽略此障碍物威胁。对突发威胁的突防能力也可称为动态避障规划能力。

局部处理能力强。

不论障碍物是否属于突发威胁障碍物,人工势能场法使用的都是局部信息,而非全局的信息,因此无需全局长时间的进行搜索和优化路径。

缺点:

有“零势能点”存在,将导致智能体停止运动;

例如当二维空间中仅仅存在三个点状的障碍物时,此三个点状障碍物恰好形成等边三角形的三个顶点,并且智能体恰好位于此三角形的中心点上,此时智能体的合力为零,其势能也为零。

此时无法对智能体的运动状态进行更新,此时智能体无法通过障碍物区域。因此,为使智能体能通过障碍物区域,必须对智能体受到的合力做出改变,使之不为零。

智能体出现“局部困扰”的问题;

当二维空间中障碍物以某种规律存在时,智能体会出现在障碍物中“徘徊”的情况,即为智能体的“局部困扰”的问题。

智能体无法通过此区域的原因是,当智能体离开障碍物时,又被目标吸引走向障碍物,而当智能体被吸引进入障碍物区域后,智能体又被障碍物对其的斥力所驱使而离开障碍物区域。

以此进行死循环,并进入“徘徊”的状态,形成局部困扰的问题。因此,为使智能体不出现局部困扰的问题,必须对智能体受到的合力进行更改,使智能体绕过障碍物区域。

多智能体编队运动时无法维持编队队形。

多个智能体形成编队时,无法自动保持队形,需将智能体本身之间的作用添加到合力中,使之维持编队队形。

基于行为的编队控制方法

基于行为的控制概念最早由 Brooks提出,为多机器人协同采样任务设计了基于行为的控制体系结构。

基于行为的编队控制基本思想即:将编队控制任务分解成驶向路径点、躲避障碍物、编队保持等基本行为,并通过行为融合实现多机器人的编队控制。

基于行为法的基本思想是将多机器人编队控制任务分为简单的基本行为,如障碍避碰、驶向目标和保持队形等。

将这些基本行为融合到一起,当传感器接收到环境变换或刺激时,做出不同反应,输出系统下一步的运动反应,实现运动控制。

基本行为融合的方式有三种。

第一种是加权平均法。各基本行为根据一定的权重加权平均得到输出向量,权值的大小对应基本行为的重要性;

第二种是行为抑制法,对各个基本行为按一定的原则设定优先级,在同等条件下,优先级高的基本行为作为机器人的当前的行为;

第三种是模糊逻辑法,根据模糊规则综合各基本行为的输出,以得到机器人的输出。

基于行为法鲁棒性高、实时性好及明确的队形反馈,但行为的融合复杂,很难设计指定队形的局部基本行为,难以保证编队控制的稳定性。

基于行为编队控制方法的优点在于比较容易实现分布式控制,系统应变能力较强,能够较好的应对避碰避障问题,编队也能通过成员相互之间的感知达到队形反馈的目的。

不足之处在于无法明确定义编队系统的整体行为,不利于系统的稳定性分析。

基于路径跟随的编队控制方法

基于路径跟随的编队控制方法也可称之为协调路径跟随控制,其基本思想是将编队控制任务进行时空分解,得到空间上的路径跟随任务和时间上的协调同步任务,进而实现协调编队控制。

该方法通常会针对待同步信息指定一个领航者或者虚拟领航者作为信息同步的参考标准。

基于路径跟随的编队控制方法的主要优点:各机器人之间交换数据量很小,更适合通信受限的环境。

另外,如果短时间内编队通信链路出现故障导致个别 机器人失联,该机器人仍可沿预设路径航行,不至于处于混乱状态,直至通信恢复正常或者采用其他补救措施。

基于路径跟随的编队控制方法具有重要的实际应用价值,也因此成为近几年比较热门的研究内容之一。

基于信息一致性的编队控制方法

多智能体系统的一致性问题即:系统中各智能体量化信息在适当控制律作用下趋于某种一致性。

对于多机器人系统这些信息通常包含各成员的位置、姿态及速度等,可以通过各成员之间相互通信获得,也可以通过感知获得。

信息一致性方法通常假定智能体仅与其相邻个体进行信息交互,因此基于信息一致性方法的优点在于能够适用于大尺度的编队控制。

不足之处在于寻找合适的量化信息、拓扑结构以保证一致性算法在有限时间内收敛存在一定难度。

编队控制算法指标

路径长短:多机器人从起点到目标点行进的平均距离与起点和目标点

之间直线距离的比值。该值越小,性能越好;反之越差。

队形维持:不同时刻运动过程中机器人在期望位置的比例。该值表示

在有障碍时保持队形的性能。该值越小,说明队形保持情况越好;反之越差。

运行时间:多机器人到达目标点及队形形成所用的时间。

避障代价:多机器人与障碍物发生的碰撞次数。碰撞次数越少,避障

代价越小,避障算法越好;反之越差。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    211

    文章

    28468

    浏览量

    207360

原文标题:机器人编队控制总结

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    【「具身智能机器人系统」阅读体验】2.具身智能机器人的基础模块

    具身智能机器人的基础模块,这个是本书的第二部分内容,主要分为四个部分:机器人计算系统,自主机器人的感知系统,自主机器人的定位系统,自主机器人
    发表于 01-04 19:22

    【「具身智能机器人系统」阅读体验】2.具身智能机器人大模型

    。 多模态融合的创新与突破 机器人控制技术的另一个重要突破在于多模态大模型的应用。相比于仅通过文字进行人机交互的传统方法,现代机器人能够融合视觉、声音、定位等多模态输入信息,为任务执行
    发表于 12-29 23:04

    【「具身智能机器人系统」阅读体验】1.初步理解具身智能

    重要。 书中还详细介绍了支持具身智能机器人的核心技术系统,包括自主机器人计算系统、感知系统、定位系统及规划和控制系统。 本书共分5个部分。 第1部分(第1章和第2章)介绍具身智能机器人
    发表于 12-28 21:12

    《具身智能机器人系统》第7-9章阅读心得之具身智能机器人与大模型

    将自然语言理解与运动规划融为一体。这种端到端的方法使机器人能够直接从人类指令生成动作序列,大幅简化了控制流程。该项目的工作流程包含设计并封装一个人机器人函数库、编写清晰地描述提示词、在
    发表于 12-24 15:03

    《具身智能机器人系统》第1-6章阅读心得之具身智能机器人系统背景知识与基础模块

    、谷歌的RT系列等前沿产品中展露锋芒。这些突破性成果标志着AI正从虚拟世界迈向物理世界的深度交互。 而研读《具身智能机器人系统》前六章,我对具身智能(Embodied Artificial
    发表于 12-19 22:26

    安川工业机器人结构

    本章节进行安川工业机器人介绍分享 --关于安川工业机器人可分为三部分组成,其分别是:机器人本体、控制柜与示教编程器,当然控制柜与
    的头像 发表于 12-19 09:59 316次阅读
    安川工业<b class='flag-5'>机器人</b><b class='flag-5'>结构</b>

    鸿蒙机器人与鸿蒙开发板联动演示

    鸿蒙机器人与鸿蒙开发板联动演示,机器人的角色为迎宾机器人,开发板负责人宾客出现监听
    发表于 12-02 14:55

    柔性机器人和刚性机器人有什么区别?

    柔性机器人和刚性机器人都是工业机器人的一种,柔性机器人和刚性机器人的主要区别在于它们的结构和使用
    的头像 发表于 08-16 10:17 575次阅读
    柔性<b class='flag-5'>机器人</b>和刚性<b class='flag-5'>机器人</b>有什么区别?

    柔性机器人与刚性机器人区别与联系

    柔性机器人和刚性机器人结构、功能、应用场景等方面存在显著的区别,但也有一些联系。以下是它们的主要区别与联系: 区别 1.结构材料 柔性机器人
    的头像 发表于 07-21 15:37 630次阅读
    柔性<b class='flag-5'>机器人</b>与刚性<b class='flag-5'>机器人</b>区别与联系

    机器人神经网络控制原理是什么

    引言 机器人技术是当今科技发展的重要方向之一,其应用领域涵盖了工业、医疗、农业、军事等多个方面。机器人控制技术是实现机器人自主化和智能化的关键技术之一。传统的
    的头像 发表于 07-09 09:40 545次阅读

    Al大模型机器人

    金航标kinghelm萨科微slkor总经理宋仕强介绍说,萨科微Al大模型机器人有哪些的优势?萨科微AI大模型机器人由清华大学毕业的天才少年N博士和王博士团队开发,与同行相比具有许多优势:语言
    发表于 07-05 08:52

    如何使用PLC控制机器人

    随着工业自动化技术的飞速发展,机器人技术作为其中的重要组成部分,其应用范围日益广泛。在机器人控制系统中,PLC(Programmable Logic Controller,可编程逻辑控制
    的头像 发表于 06-17 10:50 1787次阅读

    机器人控制系统按控制方法可哪些种类

    机器人控制系统是机器人技术的核心组成部分,它负责接收外部指令,对机器人的运动和行为进行控制和调节。根据
    的头像 发表于 06-16 15:35 1967次阅读

    工业机器人电气控制系统的体系结构主要有哪些

    工业机器人电气控制系统是工业机器人的重要组成部分,它负责控制机器人的运动和执行各种任务。随着工业自动化和智能制造的发展,工业
    的头像 发表于 06-16 15:28 1818次阅读

    基于FPGA EtherCAT的六自由度机器人视觉伺服控制设计

    和增强系统处理图像的实时性,本文提出了一种伊瑟特的六自由度机器人视觉伺服控制系统,将摄像头集成到基于 Zynq的伊瑟特主站上,提高了视觉伺服的实时性.经测试,该平台能够对视觉检测目标的变化做出及时的反应
    发表于 05-29 16:17