0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习和深度学习是什么关系

wFVr_Hardware_1 来源:硬十AI 作者:硬十AI 2022-10-11 15:07 次阅读

什么是学习?

机器学习深度学习中都有“学习”两字,我们首先要理解什么是“学习”。著名的赫伯特·西蒙教授(Herbert Simon)是1975年图灵奖获得者、1978年诺贝尔经济学奖获得者,这位大牛曾对“学习”下过一个定义“如果一个系统,能够通过执行某个过程,就此改进了它的性能,那么这个过程就是学习”。大师永远都是言简意赅,一针见血,我们从西蒙教授下的定义可以看出“学习的核心目的就是改善性能”。

其实不仅仅是对于机器,对于人而言这个定义也是适用的。我们从小就被教育要“好好学习,天天向上”,我们“学习”的目标是为了“向上”,如果没有性能上的“向上”,即使非常辛苦地“好好”,即使长时间地“天天”,都无法算作“学习”。如果我们仅仅是低层次的重复性学习,而没有达到认知升级的目的,那么即使表面看起来非常勤奋,其实也只是一个“伪学习者”,因为我们没有改善性能。

下面我们就一起继续“好好学习”机器学习和深度学习的知识,我们目的就是为了提升自己在机器学习和深度学习上的认知水平。

2、人工智能、机器学习、和深度学习是什么关系?

先抛出结论,机器学习(Machine Learning,ML)是人工智能(Artificial Intelligence,AI)的一个分支,深度学习(Deep Learning,DL)是ML中的一个子集,或者说,机器学习是实现人工智能的一种方法,而深度学习仅仅是实现机器学习的一种技术。

02df2466-491f-11ed-a3b6-dac502259ad0.png

下面我们来仔仔细细“学习”一下AI、ML、DL这三个概念

(1)人工智能:AI表示机器模仿人类通常表现出的智能行为的任何活动,这是一个非常大的研究领域,机器旨在复制认知能力,例如学习行为、与环境的主动交互、推理和演绎、计算机视觉语音识别、问题求解、知识表示和感知;AI建立在计算机科学、数学和统计学以及心理学和其他研究人类行为的科学的基础上。建立AI有多种策略,在20世纪70年代和20世纪80年代,“专家”系统变得非常流行,这些系统的目标是通过用大量手动定义的if-then规则表示知识来解决复杂的问题,这种方法适用于非常特定的领域中的小问题,但无法扩展到较大的问题和多领域中,后来AI也在不断的改进,越来越关注基于统计的方法。

(2)机器学习:ML是AI的一个子学科,专注于教授计算机如何对特定任务进行学习而无须编程,ML背后的关键思想是可以创建从数据中学习并做出预测的算法。机器学习也分好多种,我们向大家介绍一下有监督学习,无监督学习,增强学习这几种。

有监督学习,向机器提供输入数据及期望输出,目的是从这些训练实例中学习,以使机器可以对从未见过的数据做出有意义的预测。

无监督学习,仅向机器提供输入数据,机器随后必须自己寻找一些有意义的结构,而无须外部监督或输入。

增强学习,机器充当代理,与环境交互。如果机器的行为符合要求,就会有“奖励”;否则,就会受到“惩罚”,机器试图通过学习相应地发展其行为来最大化奖励。

(3)深度学习:DL也是机器学习的一个子集,深度学习与传统的监督学习和无监督学习是有区分的,深度学习是高度数据依赖型的算法,它的性能通常是随着数据量的增加而不断增强的,也就是说深度学习的可扩展性显著优于传统的机器学习算法,但前提是有足够多、足够好的数据。

3、机器学习和深度学习的发展经过了哪几个阶段? 如前文讨论的,作为人工智能的重要分支,机器学习主要研究的是如何使机器通过识别和利用现有知识来获取新知识和新技能。自20世纪80年代以来,机器学习已经在算法、理论和应用等方面都取得巨大成功,而被广泛应用于产业界与学术界。简单来说,机器学习就是通过算法使得机器能从大量历史数据中学习规律,从而对新的样本完成智能识别或对未来做预测;而深度学习是机器学习的一个分支和新的研究领域。如今在大数据的背景下可用数据量的激增、计算能力的增强以及计算成本的降低为深度学习的进一步发展提供了平台,同时也为深度学习在各大领域中的应用提供了支撑。 回顾历史机器学习的发展历程大致可以分为五个时期,而伴随着机器学习的发展,深度学习共出现三次浪潮。我们以机器学习的发展作为主线来介绍不同时期机器学习与深度学习之间的关系。

第一个时期从20世纪50年代持续至20世纪70年代,由于在此期间研究人员致力于用数学证明机器学习的合理性,因此称之为“推理期”。在此期间深度学习的雏形出现在控制论中,随着生物学习理论的发展与第一个模型的实现(感知机,1958年),其能实现单个神经元的训练,这是深度学习的第一次浪潮。

第二个时期从20世纪70年代持续至20世纪80年代,由于在这个阶段机器学习专家认为机器学习就是让机器获取知识,因此称之为“知识期”,在此期间深度学习主要表现在机器学习中基于神经网络的连接主义。

第三个时期从20世纪80年代持续至20世纪90年代,这个时期的机器学习专家主张让机器“主动”学习,即从样例中学习知识,代表性成果包括决策树和BP神经网络,因此称这个时期为“学习期”。在此期间深度学习仍然表现为基于神经网络的连接主义,而其中BP神经网络的提出为深度学习带来了第二次浪潮。其实在此期间就存在很好的算法,但由于数据量以及计算能力的限制致使这些算法的良好效果并没有展现出来。

第四个时期从20世纪初持续至21世纪初,这时的研究者们开始尝试用统计的方法分析并预测数据的分布,因此称这个时期为“统计期”,这个阶段提出了代表性的算法“支持向量机”,而此时的深度学习仍然停留在第二次浪潮中。

第五个时期从20世纪初持续至今,神经网络再一次被机器学习专家重视,2006年Hinton及其学生Salakhutdinov发表的论文《Reducing the Dimensionality of Data with Neural Networks》标志着深度学习的正式复兴,该时期掀起深度学习的第三次浪潮,同时在机器学习的发展阶段中被称为“深度学习”时期。此时,深度神经网络已经优于与之竞争的基于其他机器学习的技术以及手工设计功能的AI系统。而在此之后,伴随着数据量的爆炸式增长与计算能力的与日俱增,深度学习得到了进一步的发展。

机器学习和深度学习发展的漫漫长路

030284ba-491f-11ed-a3b6-dac502259ad0.png

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8428

    浏览量

    132820
  • 深度学习
    +关注

    关注

    73

    文章

    5508

    浏览量

    121312

原文标题:【科普】机器学习和深度学习是一回事么?

文章出处:【微信号:Hardware_10W,微信公众号:硬件十万个为什么】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    传统机器学习方法和应用指导

    用于开发生物学数据的机器学习方法。尽管深度学习(一般指神经网络算法)是一个强大的工具,目前也非常流行,但它的应用领域仍然有限。与深度
    的头像 发表于 12-30 09:16 281次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    NPU与机器学习算法的关系

    在人工智能领域,机器学习算法是实现智能系统的核心。随着数据量的激增和算法复杂度的提升,对计算资源的需求也在不断增长。NPU作为一种专门为深度学习
    的头像 发表于 11-15 09:19 529次阅读

    NPU在深度学习中的应用

    随着人工智能技术的飞速发展,深度学习作为其核心驱动力之一,已经在众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门为深度学习
    的头像 发表于 11-14 15:17 704次阅读

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 422次阅读

    激光雷达技术的基于深度学习的进步

    信息。这使得激光雷达在自动驾驶、无人机、机器人等领域具有广泛的应用前景。 二、深度学习技术的发展 深度学习
    的头像 发表于 10-27 10:57 442次阅读

    具身智能与机器学习关系

    具身智能(Embodied Intelligence)和机器学习(Machine Learning)是人工智能领域的两个重要概念,它们之间存在着密切的关系。 1. 具身智能的定义 具身智能是指智能体
    的头像 发表于 10-27 10:33 424次阅读

    AI大模型与深度学习关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度
    的头像 发表于 10-23 15:25 962次阅读

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个领域。随
    的头像 发表于 07-09 15:54 1049次阅读

    深度学习中的无监督学习方法综述

    深度学习作为机器学习领域的一个重要分支,近年来在多个领域取得了显著的成果,特别是在图像识别、语音识别、自然语言处理等领域。然而,深度
    的头像 发表于 07-09 10:50 837次阅读

    深度学习在视觉检测中的应用

    深度学习机器学习领域中的一个重要分支,其核心在于通过构建具有多层次的神经网络模型,使计算机能够从大量数据中自动学习并提取特征,进而实现对复
    的头像 发表于 07-08 10:27 771次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文将介绍深度学习与NLP的区别。 深度
    的头像 发表于 07-05 09:47 987次阅读

    人工智能、机器学习深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度学习(Deep Learning,
    的头像 发表于 07-03 18:22 1345次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于
    的头像 发表于 07-01 11:40 1446次阅读

    为什么深度学习的效果更好?

    导读深度学习机器学习的一个子集,已成为人工智能领域的一项变革性技术,在从计算机视觉、自然语言处理到自动驾驶汽车等广泛的应用中取得了显著的成功。深度
    的头像 发表于 03-09 08:26 647次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?

    什么是深度学习机器学习深度学习的主要差异

    2016年AlphaGo 击败韩国围棋冠军李世石,在媒体报道中,曾多次提及“深度学习”这个概念。
    的头像 发表于 01-15 10:31 1109次阅读
    什么是<b class='flag-5'>深度</b><b class='flag-5'>学习</b>?<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的主要差异