0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

CLarET:实现上下文到事件相关感知的预训练模型

深度学习自然语言处理 来源:arxiv.org 作者:Yucheng Zhou, Tao She 2022-10-11 15:45 次阅读

作者:Yucheng Zhou, Tao Shen, Xiubo Geng, Guodong Long, Daxin Jiang

自然语言文本里描述的“事件”,通常是由一个谓词及其论点组成的一个文本片段(span),是一个细粒度的语义单元,描述了实体的状态和行为,如 He looks very worried 和 I grab his arms。理解事件并建模它们之间的相关性是许多推理任务的基础。在图1的例子中,想要生成事件[E],模型需要先知道这里有四个事件,“it tries the knob”、“[E]”、“the creature starts pounding on the door”、“(the creature) to break it down”,然后根据其他三个事件及其相关性,如“but”表达的对比关系和“so”表达的因果关系,来预测[E]。

4f92ff70-48b7-11ed-a3b6-dac502259ad0.png

现有的基于事件的推理工作中,很多是针对某个特定的任务设计的,包括溯因推理、故事结尾的分类和生成、反事实推理、脚本推理等具体的任务,算法的应用范围较窄。预训练模型时代,更好的方案是直接训练一个基于事件的预训练模型,然后推广到各种下游推理任务上。当然,倒也不必从0到1,通常情况下,只需在通用的预训练语言模型(如BERT、GPT、BART、T5)上做微量的 continue pre-training,就能得到适用于某个领域的较好的模型了。

CLarET

ClarET由三个预训练任务组成,分别是Whole Event Recovering,Contrastive Event-correlation Encoding和Prompt-based Event Locating。

Whole Event Recovering(WER)

WER 的目的非常直接,就是让 encoder-decoder 架构的生成式模型还原被 mask 的整句事件描述。具体的,给定一段文本 ,其中某句话描述了事件 ,现在要做的就是用一个特殊标签 [M] 把这句话在原文中替换掉,这里用 表示被 mask 的原文。然后将文本给到 encoder,再由 decoder 还原事件 的描述。用数学公式表示的话,就是求解给定上下文 和模型 的前提下, 的概率值:

4fb4a5ee-48b7-11ed-a3b6-dac502259ad0.png

参照 Transformer 序列生成,这部分的训练目标就是优化事件 上的最大似然估计,因此损失函数定义为:

4fcae1b0-48b7-11ed-a3b6-dac502259ad0.png

其中, 表示被 mask 的整个事件的描述, 则表示 的 tokenized tokens,即 。是 decoder 的预测概率分布,表示在 t-step, 的概率。decoder 的预测依赖 encoder 部分的输出:

4fdefaa6-48b7-11ed-a3b6-dac502259ad0.png

4ff9c052-48b7-11ed-a3b6-dac502259ad0.png

这个目标类似于span recovering,但不同之处在于,在这里:

是按照一个完整的事件描述来选取 masked span 的,所以 masked span 的长度远大于普通的 span recovering 中的 masked span(普通的 span 最多只有22个 tokens,图4提供了长度分布);

另外,为了促进事件及其上下文之间的事件相关性建模,ClarET 每次只会 mask 一个事件,而其他的 MLM 工作通常会有多个 masked span。

事实上,由于现在这种 event-level 的 masked spans 比较长,就会一定程度上影响模型学习事件及其上下文之间的关系,具体体现在:

Encoder-Decoder 架构的生成式模型,如 BART 或 T5,依赖的是 token-level 的隐式共现来恢复事件描述,但是上下文 和事件 之间那种 event-level 的相关性就没有被模型利用到,所以就目前以 WER 为预训练任务得到的这个模型,在事件推理的任务上表现并不好。

由于现在直接将整个事件描述都 mask了,它的前一部分语义完整,后一部分也语义完整,它自己也语义完整,所以某种程度上来说,这个被 mask 的部分,出现什么句子都有道理,也就是说模型要正确还原一整段完整的话还是有相当的难度的,具体可以参考一些autoencoding MLM的工作。

为了解决这两个问题,作者增加了两个预训练任务,分别是,在 encoder 端增加事件相关的对比学习任务来增强上下文和事件之间的相关性,以及prompt-based event locating,意图降低 decoder 端的生成难度。

Contrastive Event-correlation Encoding

对于第一个问题,本文提出的解决方案是,在 encoder 端显示地强调缺失事件的上下文和被 mask 的事件之间的相关性,并使用对比学习来实现。对比学习通过对比来学习区分事物,通常的做法是将数据分别与正例样本和负例样本在特征空间进行对比,并构造合适的 loss 函数,拉近数据与正样例的距离,同时尽可能远离负样例。因此,可以通过构造与上下文不相关的负例事件,和正确的事件一起提供给模型,增强模型学习正确的事件描述及其上下文的相关性的能力。正例事件 和它的负样例 的 encoder embeddings 为和 :

501e1858-48b7-11ed-a3b6-dac502259ad0.png

在以下对比学习 loss 中,和 增强了 里 [M] 这个 token 在 中的表示 。本文中使用的距离函数 d(·,·)是欧几里得距离。

50471a32-48b7-11ed-a3b6-dac502259ad0.png

经过负样本增强的 也会在 decode 阶段提供事件级信息,一定程度上也会对缓解第二个问题有帮助吧。

Prompt-based Event Locating

不过针对第二个问题,作者有更加直接的方案,就是利用 prompt,将 WER 目标简化为提取生成任务,模型仅需从提示中定位(有助于模型缕清句子之间的承接关系)和复制一个候选的提示出来(限制模型的搜索范围)。

首先第一种提示,“选正确的事件描述”。作者参考 prompt-based multi-choice QA,也设计了一个 Option prompt。这里稍微讲一下 Multi-choice question answering(MCQA) 任务,MCQA 就是根据给定的问题,从候选答案中选择正确的答案[2]。现有 MCQA 存在以下两种做法:1) Text-to-Text:通过BART或T5等生成预训练模型,将问题和各个候选项同时编码,让模型直接生成正确的答案;2) Encoder-Only:通过 BERT 或 RoBERTa 等预训练模型,将候选项分别与问题一起编码,得到每个候选项的表示,再比较各个候选项的表示,选出答案。在本文中,使用的是 Text-to-Text 范式来设计 Option prompt。

5056ed90-48b7-11ed-a3b6-dac502259ad0.png

对于每段文本 ,会 sample 出 M 个 negative event ,和正确的 event 一起,共 M+1 句话,将它们随机排列之后,拼接到的后边得到 。这里给出 的一个样例:“Dan’s parents were overweight. [M] The doctors told his parents it was unhealthy. His parents understood and decided to make a change. Options: (a)They got themselves and Dan on a diet. (b)Dan was overweight as well. (c) They went to see a doctor.” 其中正确的选项是 (b),即,模型需要生成“Dan was overweight as well.”这句话。参照 WER,这部分的目标表示为 。

5072512a-48b7-11ed-a3b6-dac502259ad0.png

其次第二种提示,“找错误的事件描述”。类比不连贯推理,原文中的目标事件会被某个错误的事件 所替换,模型的任务就是指认出 ,相应的 prompt 可以构造成如下形式:

50894858-48b7-11ed-a3b6-dac502259ad0.png

同样以刚刚的文本为例,这里的输入应该是:“Dan’s parents were overweight.They got themselves and Dan on a diet. The doctors told his parents it was unhealthy. His parents understood and decided to make a change. Event: [M] is wrong.”模型的输出则是“They got themselves and Dan on a diet.”,因为这句话是错的。这部分的目标表示为。

基于以上两种 prompt 范式,这部分的优化目标为:

50946e90-48b7-11ed-a3b6-dac502259ad0.png

模型预训练和 fine-tuning 的过程

ClarET 基于上面的三个任务进行 pre-training,相应的 loss 就是直接线性相加它们各自的 loss:

50acfbb8-48b7-11ed-a3b6-dac502259ad0.png

不过有监督的 fine-tuning 会因为下游任务而不太一样。对于生成式任务,只会 fine-tuning 第一个任务。对于判别式任务,如 multi-choice,既可以类似 GPT/T5 那样定制 prompt,以生成式的方式来做,使用 negative log-likelihood loss;也可以像 BART 那样取 classifying heads 做分类式的 fine-tuning,使用 cross-entropy loss。实验发现 BART 这种效果更好,所以接下来的相关实验都采用了这种形式。

与其他基于事件的预训练模型对比

本文还稍微对比了一下 ClarET 和另外两个事件预训练模型 EventBERT 和 COMeT。ClarET 跟 EventBERT 的数据处理以及动机是一致的,但是 EventBERT 是“discriminative-only”,即仅适用于分类任务,ClarET 则在是生成式的范式,能支持更加“unified”的场景;另外,ClarET 的对比学习和基于 prompt 的事件定位这两个任务,能显示并有效地学习上下文和事件之间的 event-level corrections,相比 EventBERT 的“event-backfilling and contextualizing”更高效。另一个,COMeT,它虽然也是一个生成式模型,但侧重于 triple-level 的常识推理——给定(head event, relation)来生成 tail events,动机、范围、评价指标,跟 ClarET 都是正交的。

实验/分析

主要结果

本文选取了5个生成任务和4个分类任务作为下游任务进行模型的评估,每个任务使用一种数据集。生成任务包括 ART (αNLG) 上的溯因常识推理、TIMETRAVEL 上的反事实故事生成、故事结尾生成、常识故事生成和 APSI 上的事件过程完成。分类任务包括 MCNC 上的脚本推理、ART (αNLI)上的诱导常识推理、ROCStories 上的叙事不连贯检测和故事完形填空测试。

从表1看来,ClarET 在生成式任务上表现相当优异,都达到了 SOTA,一定程度上说明了基于 event-level 做 few steps continual pre-training 是可行的方案。当然,在生成式范式的加持下,ClarET 很自然地能为“各种以事件为中心的相关推理任务提供一个通用的解决方案”。

再来看看表2,ClarET 在分类任务上也挺不错的,可以跟强判别式模型比如 EventBERT 拼一拼,虽然某些任务的精度稍差一点,但是 GPU 小时比 EventBERT 少了5.6倍,而且泛化性比判别式好。有一点需要注意,EventBERT 的预训练任务范式和下游任务范式其实是差不多的,而 ClarET 预训练是生成式的,下游任务则换成分类,还是差挺多的,这样还能有如此结果,说明 ClarET 还是有一定优势的。后续也可以把 ClarET 作为统一的基于事件的预训练模型,用在以事件为中心的相关任务上。

50cf6f04-48b7-11ed-a3b6-dac502259ad0.png

5101191e-48b7-11ed-a3b6-dac502259ad0.png

一些定量分析

Zero-shot Learning

这部分实验主要想验证 ClarET 有没有学到事件信息,对比对象是其他的 MLM 模型,结果看表3和表4,还是按生成式和分类式划分。通用的预训练模型没有针对事件进行任何处理,可想而知结果跟 ClarET 是比不了的。Zero-shot 设定下,ClarET 显然是最好的。

5122ab1a-48b7-11ed-a3b6-dac502259ad0.png

51482926-48b7-11ed-a3b6-dac502259ad0.png

Few-shot Learning

因为 ClarET 减少了预训练和微调在事件上的不一致,所以只需要10%-30%的训练数据进行微调,就可以实现与强基线类似的性能(图3)。

5157f73e-48b7-11ed-a3b6-dac502259ad0.png

Ablation study

表5在生成和分类任务上分别进行了三个预训练目标任务的消融实验,每个预训练任务都能在基准模型 BART-large 的基础上带来提升。

517847f0-48b7-11ed-a3b6-dac502259ad0.png

Comparison with Larger Model

表7验证了事件相关知识能使预训练模型在参数量较少的情况下也能有较好的表现。

519971c8-48b7-11ed-a3b6-dac502259ad0.png

Difficulty of Event Generation

表6,验证只使用 WER 的预训练存在学习困难问题,而额外的两个预训练任务能缓解这个问题。用的评价指标是事件级困惑度 ePPT。我们都知道,当我们在比较几个语言模型的优劣时,我们希望更好的语言模型能赋予测试集中的正确句子更高的概率值,相应的,模型的困惑度(Perplexity)就越低;那么类比 PPL,ePPL 就可以理解为,期望更好的语言模型能够赋予相关事件的句子更高的概率值,且相应的整体 ePPL 越低越好。所以当表6中 ClarET 的 ePPL 明显低于 WER-Only Model 时,说明额外的两个预训练任务能有效改善 WER。

51ae98e6-48b7-11ed-a3b6-dac502259ad0.png

Long-span Event Generation.

图4, 验证 ClarET 在 longer-span 事件生成上更有优势。本实验的数据里,大部分事件长度在6-8,但仍然有很多大于9的样例。可以明显看到,随着事件长度的增加,其他模型与 ClarET 之间的差距越来越大,因为通用模型在预训练时只考虑了短的 masked span,导致事件生成较差。

51d0556c-48b7-11ed-a3b6-dac502259ad0.png

Natural Language Understanding (NLU)

图5,验证 minor event-centric continual pre-training 不会损害 BART-large 本身的 NLU 能力,用 GLUE 基准做的验证实验。结果是 fine-tuning 的 BART 和 ClarET 相差不多,说明 ClarET 仍然保留了相当的 NLU 能力。

51e27012-48b7-11ed-a3b6-dac502259ad0.png

案例研究与错误分析

最后是 case study 和 error analysis。

图6给了两个生成溯因推理任务的 case。第一个 case 显示 ClarET 能较好地掌握上下文,生成的结果比 BART 要完整。

第二个 case 显示,当 gold event 很复杂时,ClarET 的生成结果比较不理想,主要体现在,倾向于忽略比较细微的上下文。具体来说,该模型只关注‘at the end of the day’从而生成‘... spent the whole day ...’,而忽略了‘starting her job ...teacher’和‘they liked her’。更进一步,作者发现模型在解码长事件时普遍存在一个现象,即 ClarET 和 WER-only 之间的 token-level perplexity 的差距逐渐减小(图7)。

作者分析,是因为当 mask 的 span 较长时,模型倾向于在解码过程基于已经生成的 tokens 预测下一个 token,而不是去利用上下文,并且 span 越长越明显。这个问题,目前倒是还没有看到很好的解决办法。

51f17648-48b7-11ed-a3b6-dac502259ad0.png

5210b27e-48b7-11ed-a3b6-dac502259ad0.png

结论

本次分享的 ClarET,虽然主要工作是基于事件推理,但是对于其他以事件为中心的任务(如情感分析)还是有不少借鉴之处,特别是后两个预训练任务,从对比学习和提示学习的角度缓解了 long masked span 学习困难的问题,这样的思路也可以推广到其他“从上下文学习语义文本单元”的任务中去,例如当文本单元是实体和概念时,可以用于学习关系和常识知识。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4700

    浏览量

    128673

原文标题:CLarET:实现上下文到事件相关感知的预训练模型

文章出处:【微信号:zenRRan,微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    关于进程上下文、中断上下文及原子上下文的一些概念理解

    不同运行状态,才有了上下文的概念。用户空间的应用程序,如果想请求系统服务,比如操作某个物理设备,映射设备的地址用户空间,必须通过系统调用来实现。(系统调用是操作系统提供给用户空间的接口函数)。 通过系统
    发表于 09-06 09:58

    进程上下文与中断上下文的理解

    来源 网络一.什么是内核态和用户态内核态:在内核空间执行,通常是驱动程序,中断相关程序,内核调度程序,内存管理及其操作程序。用户态:用户程序运行空间。 二.什么是进程上下文与中断上下文1.进程
    发表于 12-11 19:45

    进程上下文/中断上下文及原子上下文的概念

    为什么会有上下文这种概念进程上下文/中断上下文及原子上下文的概念
    发表于 01-13 07:17

    基于多Agent的用户上下文自适应站点构架

    自适应站点很少考虑对用户环境的自适应。为此,提出用户上下文自适应站点的概念,给出基于多Agent技术的用户上下文自适应站点构架模型。阐述用户上下文获取、挖掘过程以及站
    发表于 04-11 08:49 13次下载

    基于交互上下文的预测方法

    传统的上下文预测是在单用户的上下文基础上进行的,忽视了实际普适计算环境中由于用户交互活动导致的上下文变化因素。为了合理、有效地解决上述局限性问题,该文提出基
    发表于 10-04 14:08 7次下载

    移动设备的个性化推荐在上下文感知应用

    个性化推荐对上下文感知系统具有广泛而重要应用,现在大多数个性化推荐系统很少考虑用户的认知风格。文中比较了场独立用户和场依赖用户在上下文感知环境中所存在的差异
    发表于 01-15 16:57 10次下载

    终端业务上下文的定义方法及业务模型

    该文针对业务上下文仅关注业务质量较少考虑用户终端环境的现状,提出终端业务上下文的概念,为普适业务的开展提供必要的信息支撑。给出一种终端业务上下文的通用定义方法
    发表于 03-06 11:06 11次下载

    基于Pocket PC的上下文菜单实现

    介绍了基于 Pocket PC 中的点按操作概念, 论述了在Pocket PC 中上下文菜单的实现原理及方法, 并给出了基于MFC 下的Windows CE 应用程序实现上下文菜单的步
    发表于 07-25 18:26 17次下载

    基于Pocket PC的上下文菜单实现

    本文介绍了基于 Pocket PC 中的“点按”操作概念 论述了在 Pocket PC 中上下文菜单的实现原理及方法 并给出了基于 MFC 下的 Windows CE 应用程序实现上下文
    发表于 04-18 10:46 0次下载

    基于上下文相似度的分解推荐算法

    模型,再对目标用户的K个邻居用户建立移动用户一上下文一移动服务三维张量分解模型,获得目标用户的移动服务预测值,生成移动推荐。实验结果显示,与余弦相似性方法、Pearson相关系数方法和
    发表于 11-27 17:42 0次下载

    Web服务的上下文的访问控制策略模型

    Web服务环境中,交互实体通常位于不同安全域,具有不可预见性。Web服务应该基于其他与领域无关的信息而非身份来实施访问控制,以实现对跨域未知用户的访问授权。为此,提出了适应于Web服务的基于上下文
    发表于 01-05 16:32 0次下载

    基于Transformer模型上下文嵌入何时真正值得使用?

    作者发现,在决定BERT-embedding和Glove-embedding的效果性能方面,训练数据量起着关键作用。通过使用更多的训练数据,非上下文嵌入很快得到了改善,并且在使用所有可用数据时,通常能够在BERT
    的头像 发表于 08-28 10:44 2853次阅读
    基于Transformer<b class='flag-5'>模型</b>的<b class='flag-5'>上下文</b>嵌入何时真正值得使用?

    如何分析Linux CPU上下文切换问题

    在我的上一篇文章:《探讨 Linux CPU 的上下文切换》中,我谈到了 CPU 上下文切换的工作原理。快速回顾一下,CPU 上下文切换是保证 Linux 系统正常运行的核心功能。可分为进程
    的头像 发表于 05-05 20:11 1912次阅读

    网络安全中的上下文感知

    当今,所有网络安全领域都在向上下文感知基础设施转变。应用程序感知、身份感知、内容感知、流程感知
    的头像 发表于 09-20 09:27 2178次阅读

    我们能否扩展现有的训练 LLM 的上下文窗口

        在大家不断升级迭代自家大模型的时候,LLM(大语言模型)对上下文窗口的处理能力,也成为一个重要评估指标。   比如 OpenAI 的 gpt-3.5-turbo 提供 16k token
    的头像 发表于 06-30 11:09 616次阅读
    我们能否扩展现有的<b class='flag-5'>预</b><b class='flag-5'>训练</b> LLM 的<b class='flag-5'>上下文</b>窗口