0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

智能纳米药物用于动态磁共振成像

微流控 来源:高分子科技 作者:老酒高分子 2022-10-12 09:14 次阅读

为实现肿瘤的精准诊疗,开发肿瘤微环境(TME)刺激响应性成像诊断和药物递送的智能纳米药物至关重要。然而,由于肿瘤部位复杂的生理和病理障碍,实现纳米药物的高效肿瘤递送仍然面临着巨大挑战。因此,在开发新型智能诊疗纳米平台时,需要考虑多种障碍,主要包括免疫清除、网状内皮系统(RES)引起的滞留效应、高间质液压力、血管渗漏和淋巴引流不良等。

为了克服免疫和RES器官清除,由于癌细胞膜(CCM)上存在免疫片段、抗原和膜锚蛋白,多种CCM包裹的仿生纳米平台被赋予了免疫逃逸和同源肿瘤靶向能力。为了实现精准的成像诊断、有效的肿瘤给药和降低全身毒副作用,设计TME(酸性pH、过量谷胱甘肽(GSH)等)刺激响应性释放药物的智能纳米药物尤为关键。

对于纳米药物的开发来说,传统合成方法存在诸多缺陷,在重复性制备相同理化性质和足够数量的高质量纳米平台方面显得力不从心。特别是不同批次的纳米平台差异较大,这严重阻碍了其临床转化应用。

相比之下,微流控技术能够通过在微米尺度空间操控微流体进行反应,可以精确控制纳米平台的合成过程,包括成核、生长和聚集。微流控作为一种很有前途的技术,具有试剂损耗低、可控制备和一步合成等特点,在合成高质量纳米平台方面具有相当的优势,能极大助力纳米药物的临床转化。

为了制备高质量的纳米平台,用于克服TME的生理屏障,实现纳米药物的高效靶向递送、肿瘤微环境响应的药物释放、动态磁共振成像和肿瘤的联合治疗,东华大学史向阳教授团队基于微流控技术开发了CCM包覆的负载顺铂的聚多巴胺超小氧化铁纳米团簇(FDPC NCs)用于肿瘤微环境刺激响应的动态磁共振成像导引的肿瘤联合治疗(图1)。

研究团队首先利用含有二硫键的胱胺(Cys)将超小铁(Fe₃O₄)交联,得到GSH响应的Fe₃O₄纳米团簇(Fe₃O₄ NCs)。随后以Fe₃O₄ NCs、多巴胺盐酸盐(DA)、顺铂和CCM为原料,基于微流控方法合成了尺寸均一的FDPC NCs。

为了比较,研究团队通过传统的湿化学法制备了FDPC NCs的类似物(NFDPC NCs)。对比发现,FDPC NCs展现出更好的尺寸均一性、胶体稳定性和TME响应药物释放性能。同时,FDPC NCs还具有良好的光热性能、GSH触发的动态T₂/T₁ MR成像性能和羟基自由基(·OH)生成能力。

b98b1d00-49c9-11ed-a3b6-dac502259ad0.png

图1 (A)FDPC的微流控制备;(B)NFDPC的非微流控制备;(C)用于动态T₂/T₁ MR成像导引的肿瘤光热-化学-化学动力学三模态联合治疗的示意图。 研究结果表明,相比于NFDPC NCs,由于良好的尺寸均一性,FDPC NCs的癌细胞摄取量更高,从而抗肿瘤效果更明显。

一方面,在近红外光照下,由于光热治疗-化疗-化学动力学治疗联合治疗的优势,FDPC NCs表现出良好的抗肿瘤活性;另一方面,由于TME响应的特异性药物释放,FDPC NCs对正常L929细胞的毒副作用几乎可以忽略。同时,FDPC NCs具有良好的TME调控能力(图2),一方面,二硫键的断裂能够消耗癌细胞内的GSH,降低癌细胞的抗氧化能力,有助于使癌细胞对药物和活性氧(ROS)敏感;另一方面通过超小铁介导的芬顿反应生成ROS,进一步消耗GSH和促进脂质过氧化物的积累,诱导癌细胞凋亡。

bab49d8c-49c9-11ed-a3b6-dac502259ad0.png


图2 (A)不同材料处理的细胞活力检测结果;(B)不同方式处理后细胞内GSH水平变化情况;(C-D)不同方式处理后细胞内ROS水平变化情况。 随后,研究团队研究了FDPC NCs在小鼠乳腺癌4T1皮下瘤模型中的动态T2/T1 MR成像性能以及热成像性能。

结果表明,该材料能够在肿瘤部位聚集,并且具有良好的动态T₂/T₁ MR成像和热成像效果(图3)。抗肿瘤活性结果表明,在近红外光照下,FDPC NCs处理的小鼠肿瘤体积最小,相应的肿瘤切片中凋亡和坏死的癌细胞最多,即表现出最强的肿瘤抑制效果。

从治疗过程中小鼠体重变化和治疗结束后小鼠主要脏器的HE切片中,可以发现FDPC NCs的毒副作用几乎可以忽略,而单独化疗药顺铂则表现出较强的毒副作用。另外,从肝脏的HE切片中可以观察到,FDPC NCs的治疗明显抑制了4T1癌细胞的肝转移(图4)。

bbf4ff52-49c9-11ed-a3b6-dac502259ad0.png

图3 (A)尾静脉注射不同材料后小鼠体内动态T₂/T₁ MR成像;(B-C)尾静脉注射不同材料后肿瘤部位T₂和T₁ MR信噪比;(D-E)尾静脉注射不同材料后小鼠体内热成像及对应肿瘤部位温度变化。

bc753992-49c9-11ed-a3b6-dac502259ad0.png

图4 (A)小鼠体内治疗过程示意图;(B-C)治疗14天内小鼠肿瘤体积及体重变化曲线;(D)治疗第14天肿瘤照片;(E)治疗第14天肿瘤切片的HE和TUNEL染色结果;(F)治疗第14天主要脏器切片的HE染色结果。 简言之,该研究设计的FDPC纳米平台的主要优势在于以下几个方面:

1)与传统湿化学方法制备的类似物相比,基于微流控的方法制备的FDPC纳米平台具有更好的均一性、胶体稳定性和TME刺激药物释放性能;

2)通过二硫键的断裂消耗GSH和基于超小铁介导的ROS生成,调控肿瘤微环境,降低癌细胞的抗氧化能力,促使癌细胞对药物和ROS敏感,减少毒副作用;

3)FDPC纳米平台具有良好的同源靶向性能、光热性能和GSH响应的MR成像性能,可用于靶向肿瘤GSH响应的动态T₂/T₁ MR成像和联合治疗。




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 磁共振成像
    +关注

    关注

    0

    文章

    20

    浏览量

    8581
  • CCM
    CCM
    +关注

    关注

    0

    文章

    144

    浏览量

    23895
  • 微流控
    +关注

    关注

    16

    文章

    495

    浏览量

    18843
  • ROS
    ROS
    +关注

    关注

    1

    文章

    276

    浏览量

    16939

原文标题:基于微流控技术合成的智能纳米药物,用于动态磁共振成像引导的肿瘤联合治疗

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    超导纳米线延迟线单光子成像器件进展及应用

    线延迟线单光子成像器件是一种新型的单光子成像器件,它利用超导纳米线特有的高动态电感构造低速微波传输线,通过对输出电脉冲进行时间逻辑分析,同步读取光子的到达时刻和空间位置。
    的头像 发表于 10-22 14:48 137次阅读
    超导<b class='flag-5'>纳米</b>线延迟线单光子<b class='flag-5'>成像</b>器件进展及应用

    国仪量子推出全球首台AI电子顺磁共振波谱仪

    10月20日,媒体报道称,在浙江大学举办的2024年全国电子顺磁共振波谱学学术研讨会上,国仪量子技术(合肥)股份有限公司(简称国仪量子)隆重推出了全球首台AI电子顺磁共振波谱仪(AI-EPR)。
    的头像 发表于 10-22 11:20 271次阅读

    磁共振机房精密空调,如何避免故障?

    磁共振机房精密空调系统常见故障与处理。
    的头像 发表于 10-12 18:13 142次阅读
    核<b class='flag-5'>磁共振</b>机房精密空调,如何避免故障?

    THS4631DGNR是否可以用在磁共振成像设备中?

    THS4631DGNR是否可以用在磁共振成像设备中
    发表于 09-24 07:48

    磁共振检查常用线圈及分类方法

    磁共振成像(Magnetic Resonance Imaging,MRI)是一种利用核磁共振原理对人体进行成像的医学检查技术。MRI具有无辐射、高分辨率、多参数
    的头像 发表于 08-21 09:52 928次阅读

    高压功率放大器在核磁共振陀螺研究中的应用

    实验名称:核磁共振陀螺内嵌磁力仪的横向弛豫时间在线测量方法实验研究方向:精密测量测试目的:核磁共振陀螺中探测光频率变动将导致内嵌磁力仪所测信号幅度的变动,进而导致陀螺的零偏漂移。根据核磁共振陀螺结构
    的头像 发表于 07-25 11:49 703次阅读
    高压功率放大器在核<b class='flag-5'>磁共振</b>陀螺研究中的应用

    饱和吸收光谱的新型量子光学磁力计,确保核磁共振成像质量

    磁共振成像(MRI)扫描仪可以提供质量卓越的3D图像,但用于创建这些图像的强磁场存在扰动,可能会在扫描中引入误差和干扰。
    的头像 发表于 05-28 09:19 1317次阅读
    饱和吸收光谱的新型量子光学磁力计,确保核<b class='flag-5'>磁共振成像</b>质量

    深入浅出带你了解磁共振成像(MRI)基本原理

    磁共振成像技术原本称为核磁共振成像。很多人听到“核磁”,第1反应是这个对人体有害吗,因为名称中不是有“核”吗。其实,此处的”核“指”原子核“确实不假,但磁共振
    的头像 发表于 04-03 17:04 830次阅读
    深入浅出带你了解<b class='flag-5'>磁共振</b><b class='flag-5'>成像</b>(MRI)基本原理

    了解成像系统中的动态范围

    但这个故事还有很多内容,在本文中,我想探讨动态范围的概念,因为它适用于数字成像系统。这样,我们将从更全面地理解这个问题开始,然后在下一篇文章中,我们可以检查半导体和电路设计级别的动态
    发表于 01-29 15:08 491次阅读
    了解<b class='flag-5'>成像</b>系统中的<b class='flag-5'>动态</b>范围

    中国科大:发展关联量子传感技术实现点缺陷的三维纳米成像

    传感新品 【中国科大:发展关联量子传感技术实现点缺陷的三维纳米成像】 中国科学技术大学中国科学院微观磁共振重点实验室杜江峰、王亚等人在量子精密测量领域取得重要进展,提出基于信号关联的新量子传感范式
    的头像 发表于 01-17 17:34 506次阅读
    中国科大:发展关联量子传感技术实现点缺陷的三维<b class='flag-5'>纳米</b><b class='flag-5'>成像</b>

    如何利用关联量子传感技术实现点缺陷的三维纳米成像

    近期,中国科学技术大学、中国科学院微观磁共振重点实验室杜江峰、王亚等人在量子精密测量领域取得重要进展,提出基于信号关联的新量子传感范式,实现对金刚石内点缺陷的高精度成像,并实时观测了点缺陷的电荷动力学。
    的头像 发表于 01-09 09:28 645次阅读
    如何利用关联量子传感技术实现点缺陷的三维<b class='flag-5'>纳米</b><b class='flag-5'>成像</b>

    用于体内实时动态多重成像的NIR-II窗口中的荧光放大纳米晶体

    实时动态光学成像系统在生命科学和生物医学工程中一直是受到广泛关注的研究热点。该成像系统在可以实时观测样本的基础之上,还具有高灵敏度、高时空分辨率等独特优势。特别是,实时动态多重
    的头像 发表于 12-21 06:34 391次阅读
    <b class='flag-5'>用于</b>体内实时<b class='flag-5'>动态</b>多重<b class='flag-5'>成像</b>的NIR-II窗口中的荧光放大<b class='flag-5'>纳米</b>晶体

    用于纳米材料合成的微流控技术综述

    纳米材料具有独特的物理化学性质,其作为新一代药物给药剂型日益受到重视。纳米材料的小尺寸能够增加药物负载能力,延长药物的血液循环时间,并改善
    的头像 发表于 12-12 16:59 945次阅读
    <b class='flag-5'>用于</b><b class='flag-5'>纳米</b>材料合成的微流控技术综述

    基于FP共振剪裁面板的屏障穿透超声成像

    如果没有RTP,来自船体内部物体的反射信号实际上不携带目标物体的信息。研究人员的高质量成像方法利用了任何期望频率下的FP共振现象,这与固有的FP共振频率不同。
    的头像 发表于 12-05 11:28 508次阅读
    基于FP<b class='flag-5'>共振</b>剪裁面板的屏障穿透超声<b class='flag-5'>成像</b>

    无标记等离子体纳米成像新技术

      一种使用等离子体激元的新型成像技术能够以增强的灵敏度观察纳米颗粒。休斯顿大学纳米生物光子学实验室的石伟川教授和他的同事正在研究纳米材料和设备在生物医学、能源和环境方面的应用。该小组
    的头像 发表于 11-27 06:35 329次阅读