0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

CLLC拓扑在双向OBC应用中的设计挑战

安森美 来源:安森美 作者:安森美 2022-10-18 10:29 次阅读

随着双碳目标的推进,电动汽车车载充电器(以下简称“OBC”),正朝双向能量传输的方向发展,其既能从电网获取电能,又可将电能反馈至电网。配置了双向OBC的电动汽车,可用剩余电量为耗尽电量的电动汽车充电,也可在户外充当220 V电源,还可被当作分布式储能站,帮助电网消峰填谷。本文将探讨CLLC拓扑在双向OBC应用中的设计挑战和安森美(onsemi)的6.6 kW CLLC参考设计如何解决这些挑战。

什么是CLLC拓扑

如图1所示,隔离DCDC是构成双向OBC的主要组成部分之一。在200 W以上隔离DCDC应用中,包括单向OBC,很多都会用到LLC拓扑,因为它具有能效高、EMI表现好、开发难度低等优势,但这种拓扑只能用于单向能量传输。

2d5e02d8-4e16-11ed-a3b6-dac502259ad0.jpg

图1:双向OBC框图

大部分的双向OBC中隔离DCDC级都会采用CLLC拓扑。CLLC拓扑(如图2所示)是将LLC拓扑中电池侧的桥式整流二极管换成有源桥,然后再在变压器的电池端串上一个C来确保磁平衡。

给电池充电的时候,左侧的桥做主动开关,右侧的桥做同步整流;当电池向外做逆变的时候,右侧的桥做主动开关,左侧的桥做同步整流。CLLC继承了LLC拓扑的特点,采用脉冲频率调节来控制增益,具有同样的软开关特性,因此,能效高,EMI表现好,简单,但存在增益调整范围窄、难以满足宽广的电池电压变化范围的挑战。

为此,安森美推出一个6.6 kW CLLC参考设计SEC-6K6W-CLLC-GEVK,它采用宽母线电压范围来应对电池电压变化,峰值能效超过98%,帮助设计人员解决挑战,加快开发。

2d829328-4e16-11ed-a3b6-dac502259ad0.png

图2:CLLC拓扑

2da8f9fa-4e16-11ed-a3b6-dac502259ad0.jpg

图3:6.6 kW CLLC参考设计SEC-6K6W-CLLC-GEVK的峰值能效超过98%

6.6 kW CLLC参考设计SEC-6K6W-CLLC-GEVK

安森美的6.6 kW CLLC参考设计SEC-6K6W-CLLC-GEVK包括三个主要部分,如图4:中间那片大板是功率板,所有高压大电流的线路都在这片板上。

右上角是控制板,通过接插件和功率板相连,方便大家在不同的控制和功率方案之间做交叉测试。左侧是谐振腔组合,包含了一个集成了谐振电感的变压器和两个谐振电容板。谐振电容由多颗MLCC经串并联组成,以在满足耐压和电流的要求下实现更小体积。谐振腔也是可拆卸的,方便设计人员验证不同的变压器、电感和电容参数。方案中包含了散热器、风扇、辅助电源、保护电路等等。连接电源和负载就可以在满载下做长时间测试。

2dc0f62c-4e16-11ed-a3b6-dac502259ad0.jpg

图4:6.6 kW CLLC参考设计SEC-6K6W-CLLC-GEVK

功率板中,位于母线侧和电池测的两个有源桥分别由四颗1200 V/40毫欧NVHL040N120SC1和四颗900 V/20毫欧NVHL020N090SC1碳化硅(SiC) MOS构成。SiC可比Si实现更高的功率密度、更高的开关频率和极高效的设计。驱动这八颗SiC MOS的是八颗磁隔离大电流驱动器。驱动信号由控制板通过控制接口送出。

控制接口的所有信号都位于电池侧,电平不超过12 V。电池端的电压、电流通过采样完通过分压、放大后直接送到控制接口。母线侧的电压采样由一颗独立的ADC来完成,数据通过SPI总线再经数字信号隔离器传到控制接口。

控制板中,我们选用了一颗车规级的LLC控制芯片NCV4390,来做脉冲频率调制(以下简称“PFM”)和同步整流控制;用低功耗MCU,来做充电的恒压值设定;用车规级轨到轨运放NCV33204来做恒流充电控制;再配上我们的车规级逻辑器件来做电网到电池和电池到电网方向的判断和转换。

电路细节的设计考量

如果想要节省成本,可以把1200 V和900 V SiC MOS换成900 V和650 V SiC MOS,但需要控制好开关尖峰,最好从降低PCB寄生电感着手,可以通过添加旁路电容实现。

高电压低Rdson的SiC MOSFET,它的Qg很大,为了在高开关频率下维持高效,必须用大电流的门极驱动器来驱动。另外,我们方案的控制接口位于电池侧,驱动母线侧的MOS必须要隔离,而且要符合安规。虽然驱动电池侧的MOS不需要安规,但是为了统一物料,我们还是选用相同的器件NCV57000,短路保护和故障报告功能是其亮点。

隔离门极驱动的另一个不错的选择是NCV51561同样带安规隔离,驱动电流更大,一推二,延时更短。虽然没有过流保护,但它的双高禁止功能也能保护到来自信号端的,由于干扰或误操作而造成的炸机风险。

选择高压辅助电源的最佳拓扑

该6.6 kW CLLC参考设计的辅助电源采用了“反激 + Buck-boost”的拓扑以应对高达750 V的母线电压,如表1,相较其他3种拓扑,这种反激+Buck-boost拓扑在成本、能效、输入电压下限、可靠性、母线电容分压平衡方面都更胜一筹。

2de93fa6-4e16-11ed-a3b6-dac502259ad0.jpg

表1:800 V 输入电压下可选的高压辅助电源拓扑

选择为高边门极驱动供电的最佳方案

辅助电源设计当中的另外一个挑战,是多组且隔离的电源轨。该6.6 kW CLLC参考设计总共需要7组电源轨。

SiC驱动需要负压,且SiC MOS的Vcc容差范围较窄,所以不宜采用自举,否则会带来稳压、时序、功耗、噪声等诸多问题。而如果采用隔离DCDC,会存在PCB占位、成本和噪声干扰等问题。

第3种方法是通过变压器绕组来输出所有电压,这是这几种方法里成本最低的一种,但缺点是工艺不好控制,易出错,噪声干扰大。我们的6.6 kW CLLC参考设计采用的脉冲变压器扩展绕组解决了上述3种方法的所有问题,更重要的是它大大缩短了动点引线的长度。

双沿跟踪自适应同步整流控制

前面提到,在控制板中采用LLC控制器NCV4390来做PFM环路和同步整流控制。NCV4390采用电流模式,环路响应快,不易震荡,自带双沿跟踪同步整流控制功能,在PFM模式和间歇工作模式之间插入了一段PWM工作模式,目的是改善轻载下的能效和电压纹波,而且NCV4390的保护功能也非常强大。值得强调的是,这种双沿跟踪同步整流控制方法已获市场验证是非常靠谱的。

总结

电动汽车OBC正朝向双向能量传输的方向发展,以配合双碳目标的推进。隔离DCDC是构成双向OBC的主要组成部分之一。大部分的双向OBC中隔离DCDC级都会采用CLLC拓扑。

安森美的6.6 kW CLLC参考设计SEC-6K6W-CLLC-GEVK,基于SiC MOS,峰值能效超过98%,还解决了CLLC拓扑在双向OBC应用中的PCB占位、噪声干扰、可靠性和成本等诸多设计挑战,它采用硬件控制器来做PFM控制,帮助设计人员加快开发。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    156

    文章

    12084

    浏览量

    231215
  • 二极管
    +关注

    关注

    147

    文章

    9638

    浏览量

    166435
  • 拓扑
    +关注

    关注

    4

    文章

    341

    浏览量

    29600

原文标题:用于双向车载充电的6.6 kW CLLC参考设计

文章出处:【微信号:onsemi-china,微信公众号:安森美】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    OBCCLLC/CLLLC拓扑与DAB拓扑比较

    OBC(on-board Charger) 作为汽车充电的重要部件 一般分为 PFC 和 DC-DC两个部分。PFC将输入交流电压整流成直流电压,再通过DC-DC对电池进行充电。
    的头像 发表于 10-16 14:11 3184次阅读

    双向车载充电器的6.6kW CLLC参考设计

    ,也可在户外充当220 V电源,还可被当作分布式储能站,帮助电网消峰填谷。本文将探讨CLLC拓扑在双向OBC应用的设计
    的头像 发表于 10-16 14:04 3147次阅读
    <b class='flag-5'>双向</b>车载充电器的6.6kW <b class='flag-5'>CLLC</b>参考设计

    安森美OBC系统解决方案设计指南

    OBC系统解决方案设计指南”又上新了,第一篇文章介绍了系统用途、系统实施方法、系统说明、市场趋势和标准等,本文将继续介绍解决方案概述及拓扑
    的头像 发表于 08-20 16:34 873次阅读
    安森美<b class='flag-5'>OBC</b>系统解决方案设计指南

    OBC迈向22kW,怎样选择设计方案?

    电子发烧友网报道(文/梁浩斌)OBC即车载充电机,无论是插电混动还是纯电车型,只要有慢充的接口,就需要有OBC来进行慢充的工作,将交流充电桩输入的交流电转换成动力电池充电所需的直流电。   而OBC
    的头像 发表于 08-16 09:11 5720次阅读

    cllc谐振变换器的应用场景

    CLLC谐振变换器作为一种高效、灵活的电力转换装置,在现代电力电子系统扮演着重要角色。其独特的双向对称结构和优良的工作特性,使得它在多个领域得到了广泛应用。 一、车载OBC系统 车载
    的头像 发表于 07-16 09:59 895次阅读

    cllc谐振变换器的拓扑结构及控制原理

    CLLC谐振变换器作为一种高效的电力转换装置,在车载OBC系统、光电、通信以及新能源发电等领域得到了广泛应用。其独特的双向对称结构和灵活的控制策略,使得它能够实现电能的双向流动(即充电
    的头像 发表于 07-16 09:56 3181次阅读

    请问mesh网络拓扑结构是如何管理的?

    请问mesh网络拓扑结构是如何管理的? 在mesh_demo ,espconn_mesh_get_node_info(MESH_NODE_ALL, &sub_dev_mac
    发表于 07-12 06:20

    OBC的硬件架构介绍

    车载充电器(On-Board Charger,简称OBC)是电动汽车和插电式混合动力汽车的关键组件。OBC 的硬件架构通常由多个主要部件组成,这些部件共同工作以实现高效、安全的充电过程。 输入级
    的头像 发表于 05-16 17:30 1374次阅读
    <b class='flag-5'>OBC</b>的硬件架构介绍

    车载obc是什么意思

    OBC(On-Board Charger)是一种车载充电器,它能够将接入的交流电流转换为电动车所需的直流电流。这种设备被设计并集成在纯电动汽车(EVs)以及插电式混合动力汽车(PHEVs),用于从
    的头像 发表于 05-16 16:55 1682次阅读

    反激电源拓扑dcm的特点是什么

    反激电源拓扑在非连续导通模式(Discontinuous Conduction Mode, DCM)下工作时,变压器的磁化电流在每个开关周期内会降到零,这意味着变压器的磁芯会进入不导磁的状态。DCM
    的头像 发表于 05-02 15:26 1074次阅读
    反激电源<b class='flag-5'>拓扑</b>dcm的特点是什么

    6.6kW OBCCLLC级参考设计套件SEC-6K6W-CLLC-GEVK数据手册

    电子发烧友网站提供《6.6kW OBCCLLC级参考设计套件SEC-6K6W-CLLC-GEVK数据手册.rar》资料免费下载
    发表于 04-23 17:33 9次下载
    6.6kW <b class='flag-5'>OBC</b>的<b class='flag-5'>CLLC</b>级参考设计套件SEC-6K6W-<b class='flag-5'>CLLC</b>-GEVK数据手册

    采用图腾柱拓扑结构的6.6kW OBC评估板SEC-6D6KW-OBC-TTP-GEVB数据手册

    电子发烧友网站提供《采用图腾柱拓扑结构的6.6kW OBC评估板SEC-6D6KW-OBC-TTP-GEVB数据手册.rar》资料免费下载
    发表于 04-23 16:57 8次下载
    采用图腾柱<b class='flag-5'>拓扑</b>结构的6.6kW <b class='flag-5'>OBC</b>评估板SEC-6D6KW-<b class='flag-5'>OBC</b>-TTP-GEVB数据手册

    6.6kW OBC SiC型号SEC-6D6KW-OBC-SIC-GEVB评估板数据手册

    电子发烧友网站提供《6.6kW OBC SiC型号SEC-6D6KW-OBC-SIC-GEVB评估板数据手册.rar》资料免费下载
    发表于 04-23 16:49 4次下载
    6.6kW <b class='flag-5'>OBC</b> SiC型号SEC-6D6KW-<b class='flag-5'>OBC</b>-SIC-GEVB评估板数据手册

    新能源汽车车载充电机(OBC拓扑结构分析

    新能源汽车车载充电机(OBC)将交流充电桩的交流电转换为动力电池所需的直流电,实现对动力电池的充电,使用交流充桩充电的新能源汽车需要搭载车载充电机。
    发表于 02-22 13:57 6180次阅读
    新能源汽车车载充电机(<b class='flag-5'>OBC</b>)<b class='flag-5'>拓扑</b>结构分析

    OBC交流充电浪涌问题怎么办

      车载充电机(OBC) 是连接交流充电桩,将交流电转化为直流电的重要电子装置。交流充电也叫“慢充”,交流充电桩将交流电网的单相交流电 (220V) 或三相交流电(380V) 电流供给装在车辆内
    的头像 发表于 01-22 17:33 772次阅读
    <b class='flag-5'>OBC</b>交流充电浪涌问题怎么办