0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种新的单目视觉里程计深度学习系统

3D视觉工坊 来源:泡泡机器人SLAM 作者:泡泡机器人 2022-10-20 09:19 次阅读

摘要

大家好,今天为大家带来的文章:Deep Patch VisualOdometry 我们提出了一种新的单目视觉里程计深度学习系统(Deep Patch Visual Odometry, DPVO)。DPVO在一个RTX-3090 GPU上仅使用4GB内存,以2 -5倍的实时速度运行时是准确和健壮的。我们在标准基准上进行评估,并在准确性和速度上超越所有之前的工作(经典的或学习过的)。



poYBAGNQonaAGGYxAAE_41hGFyA111.jpg
图1 深度斑块视觉里程计(DPVO)。相机姿态和稀疏三维重建(上)是通过迭代修正补丁轨迹随着时间

主要工作与贡献

与之前的深度学习系统相比,我们的方法的新颖之处在于在单一体系结构中紧密集成了三个关键成分:(1)基于补丁关联,(2)循环迭代更新,(3)可微束调整。基于补丁的关联提高了密集流的效率和鲁棒性。循环迭代更新和可区分的bundle调整允许端到端学习可靠的特征匹配。 DPVO准确、高效、实现简单。

在显卡(RTX-3090)上,它只需要4GB内存就能运行2倍实时。我们还提供了一个在EuRoC数据集[2]上以100fps运行的模型,同时仍然优于之前的工作。对于每一帧,运行时间是恒定的,不依赖于相机运动的程度。该系统的实现非常简单,代码量非常少。无需对底层VO实现或逻辑进行任何必要的更改,就可以轻松地交换新的网络架构。我们希望DPVO可以作为未来深度VO和SLAM系统发展的试验台。

算法流程

我们的网络是在线训练和评估的。一个接一个地添加新的帧,并在关键帧的局部窗口中进行优化。我们的方法有两个主要模块:patch提取器(3.1)和更新模块(3.2)。补丁提取器从传入帧中提取稀疏的图像补丁集合。更新模块试图通过使用循环神经网络跟踪这些补丁与包调整交替迭代更新。

3772bf04-5003-11ed-a3b6-dac502259ad0.png

图2 更新操作符的原理图。从补丁图的边缘提取相关特征,并与上下文特征一起注入到隐藏状态中。我们应用了卷积、消息传递和转换块。因子头产生轨迹修正,由束调整层用于更新相机姿势和补丁深度。

2. 方法

我们介绍了DPVO,一种新的基于补丁的深度VO系统,它克服了这些限制。我们方法的核心部分是深度补丁表示(图1)。我们使用神经网络从传入帧中提取补丁集合。然后使用循环神经网络跟踪每个补丁通过时间交替补丁轨迹更新与可微束调整层。我们在合成数据上对整个系统进行端到端训练,但在真实视频上表现出很强的泛化能力。

2.1 特征和补丁提取

我们使用一对残差网络从输入图像中提取特征。一个网络提取匹配特征,另一个网络提取上下文特征。每个网络的第一层是一个跨步2的7 × 7卷积,后面是两个1/2分辨率的剩余块(维64)和两个1/4分辨率的剩余块(维128),这样最终的特征映射是输入分辨率的1/4。匹配网络和上下文网络的结构是相同的,除了匹配网络使用实例规格化,而上下文网络不使用规格化。

我们用一个四乘四步滤波器对匹配特征进行平均池化,构建了一个两级特征金字塔。我们为每一帧存储匹配的特征。此外,我们还从匹配和上下文特征映射中提取补丁。在随机抽取斑块质心的基础上,采用双线性插值方法进行特征提取。 与DROID-SLAM不同的是,我们从未显式地构建相关卷。相反,我们同时存储帧和补丁特征映射,这样相关特征就可以实时计算

2.2 更新操作

更新操作符的目的是更新姿势和补丁。这是通过修改patch轨迹来实现的,如图1所示。我们在图2中提供了操作符的概览示意图,并详细介绍了下面的各个组件。图中的每个“+”操作都是一个残留连接,然后是层归一化。更新操作符作用于补丁图,补丁图中的每条边都用一个隐藏状态(维度为384)进行扩充。当添加一条新边时,隐藏状态初始化为0。

2.2.1 关联操作

对于补丁图中的每条边(i, j),我们计算相关特征。我们首先使用Eqn. 2对帧j中的patch i进行重投影:xij = ωij(T, P)。给定patch特征g∈Rp×p×D,帧特征f∈RH×W ×D,对于patch i中的每个像素(u, v),我们计算其与帧j中像素(u, v)重投影为中心的像素网格的相关性,使用内积:

37915f72-5003-11ed-a3b6-dac502259ad0.png

2.2.2 可微的束调整

图2中的这一层在补丁图上全局运行,并输出深度和相机姿势的更新。预测因子(δ, Σ)用于定义优化目标 379ede40-5003-11ed-a3b6-dac502259ad0.png

2.2 训练与监督

DPVO是使用PyTorch实现的。我们用TartanAir数据集训练我们的网络。在每个训练序列上,我们使用地面真值姿态和深度来预计算所有帧对之间的光流大小。在训练过程中,我们对帧对帧光流大小在16px到72px之间的轨迹进行采样。这确保了训练实例通常是困难的,但不是不可能的。 我们对姿态和光流(即轨迹更新)进行监督,监督更新操作符的每个中间输出,并在每次更新之前从梯度带中分离姿态和补丁。

2.2.2 pose监督

我们使用Umeyama对齐算法[30]缩放预测轨迹以匹配地面真相。然后对每一对姿态(i, j)进行误差监督


37b181e4-5003-11ed-a3b6-dac502259ad0.png

2.2.3 Flow监督

此外,我们还监测了每个补丁和帧之间的诱导光流和地真光流之间的距离,从每个补丁被提取的帧的两个时间戳。每个补丁诱导一个p×p流场。我们取所有p × p误差中的最小值。

2.2.4训练

我们训练长度为15的序列。前8帧用于初始化,后7帧每次添加一帧。我们在训练期间展开更新操作符的18次迭代。对于前1k的训练步骤,我们用地面真相固定姿势,只要求网络估计补丁的深度。然后,该网络被要求估计姿势和深度。 37e0a438-5003-11ed-a3b6-dac502259ad0.png

图3 VO系统概述。

2.3 VO System

在本节中,我们将介绍将我们的网络变成一个完整的可视化里程表系统所必需的几个关键实现细节。系统的逻辑主要用Python实现,瓶颈操作如包调整和可视化用c++和CUDA实现。与其他VO系统相比,DPVO非常简单,需要最少的设计选择

初始化:我们使用8帧进行初始化。我们添加新的补丁和帧,直到累积了8帧,然后运行更新操作符的12次迭代。需要一些相机运动进行初始化;因此,我们只在前一帧中积累平均流量大小至少为8像素的帧。

扩展:当添加一个新框架时,我们提取特征和补丁。新框架的姿态初始化使用恒速运动模型。补丁的深度初始化为从前3帧中提取的所有补丁的中值深度。

优化:在添加边缘之后,我们运行更新操作符的一次迭代,然后是两次包调整迭代。除了最后10个关键帧,我们修复了所有的姿势。所有补丁的逆深度都是自由参数。一旦补丁落在优化窗口之外,将从优化中删除。

关键帧:最近的3帧总是被作为关键帧。在每次更新之后,我们计算关键帧t−5和t−3之间的光流大小。如果小于64px,我们删除t−4处的关键帧。当一个关键帧被移除时,我们在它的邻居之间存储相对的姿态,这样完整的姿态轨迹可以被恢复以进行评估

可视化:使用单独的可视化线程交互式地可视化重构。我们的可视化工具是使用穿山甲库实现的。它直接从PyTorch张量中读取,避免了所有不必要的内存拷贝从CPU到GPU。这意味着可视化工具的开销非常小——仅仅使整个系统的速度降低了大约10%。

实验结果

3716aa0c-5003-11ed-a3b6-dac502259ad0.png   38071b18-5003-11ed-a3b6-dac502259ad0.png

图4 示例重建:TartanAir(左)和ETH3D(右)

38340150-5003-11ed-a3b6-dac502259ad0.png

图5 TartanAir[34]验证分离的结果。我们的方法的AUC为0.80,而DROID-SLAM的AUC为0.71,运行速度是DROID-SLAM的4倍

384feb68-5003-11ed-a3b6-dac502259ad0.png38a6abe2-5003-11ed-a3b6-dac502259ad0.png38d20cec-5003-11ed-a3b6-dac502259ad0.png 





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 滤波器
    +关注

    关注

    161

    文章

    7846

    浏览量

    178421
  • 神经网络
    +关注

    关注

    42

    文章

    4774

    浏览量

    100912
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4754

    浏览量

    129080
  • SLAM
    +关注

    关注

    23

    文章

    425

    浏览量

    31865

原文标题:DPVO:深度patch视觉里程计(arXiv 2022)

文章出处:【微信号:3D视觉工坊,微信公众号:3D视觉工坊】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    用于任意排列多相机的通用视觉里程计系统

    如何让多相机视觉SLAM系统更易于部署且对环境更具鲁棒性?本文提出了一种适用于任意排列多相机的通用视觉里程计
    的头像 发表于 12-13 11:22 270次阅读
    用于任意排列多相机的通用<b class='flag-5'>视觉</b><b class='flag-5'>里程计</b><b class='flag-5'>系统</b>

    NPU在深度学习中的应用

    设计的硬件加速器,它在深度学习中的应用日益广泛。 1. NPU的基本概念 NPU是一种专门针对深度学习算法优化的处理器,它与传统的CPU和G
    的头像 发表于 11-14 15:17 697次阅读

    一种基于深度学习的二维拉曼光谱算法

    近日,天津大学精密仪器与光电子工程学院的光子芯片实验室提出了一种基于深度学习的二维拉曼光谱算法,成果以“Rapid and accurate bacteria identification
    的头像 发表于 11-07 09:08 250次阅读
    <b class='flag-5'>一种</b>基于<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的二维拉曼光谱算法

    基于旋转平移解耦框架的视觉惯性初始化方法

    精确和鲁棒的初始化对于视觉惯性里程计(VIO)至关重要,因为不良的初始化会严重降低姿态精度。
    的头像 发表于 11-01 10:16 384次阅读
    基于旋转平移解耦框架的<b class='flag-5'>视觉</b>惯性初始化方法

    AI干货补给站 | 深度学习与机器视觉的融合探索

    ,帮助从业者积累行业知识,推动工业视觉应用的快速落地。本期亮点预告本期将以“深度学习与机器视觉的融合探索”为主题,通过讲解深度
    的头像 发表于 10-29 08:04 243次阅读
    AI干货补给站 | <b class='flag-5'>深度</b><b class='flag-5'>学习</b>与机器<b class='flag-5'>视觉</b>的融合探索

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 深度学习是AI大模型的基础 技术支撑 :
    的头像 发表于 10-23 15:25 946次阅读

    一种完全分布式的点线协同视觉惯性导航系统

    在本文中,我们提出了一种完全分布式的点线协同视觉惯性导航系统。我们通过蒙特卡罗模拟和真实环境数据集,在稠密特征或稀疏特征环境下将所提出的算法与其他四算法进行了比较。所有结果表明,我们
    的头像 发表于 09-30 14:45 452次阅读
    <b class='flag-5'>一种</b>完全分布式的点线协同<b class='flag-5'>视觉</b>惯性导航<b class='flag-5'>系统</b>

    PyTorch深度学习开发环境搭建指南

    PyTorch作为一种流行的深度学习框架,其开发环境的搭建对于深度学习研究者和开发者来说至关重要。在Windows操作
    的头像 发表于 07-16 18:29 1144次阅读

    深度学习中反卷积的原理和应用

    深度学习的广阔领域中,反卷积(Deconvolution,也称作Transposed Convolution)作为一种重要的图像上采样技术,扮演着至关重要的角色。特别是在计算机视觉
    的头像 发表于 07-14 10:22 2006次阅读

    深度学习在工业机器视觉检测中的应用

    随着深度学习技术的快速发展,其在工业机器视觉检测中的应用日益广泛,并展现出巨大的潜力。工业机器视觉检测是工业自动化领域的重要组成部分,通过图像处理和计算机
    的头像 发表于 07-08 10:40 1112次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文将介绍深度学习与NLP的区别。 深度
    的头像 发表于 07-05 09:47 982次阅读

    深度学习在计算机视觉领域的应用

    随着人工智能技术的飞速发展,深度学习作为其中的核心技术之,已经在计算机视觉领域取得了显著的成果。计算机视觉,作为计算机科学的
    的头像 发表于 07-01 11:38 854次阅读

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入
    发表于 04-23 17:18 1325次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的语义SLAM

    传统计算机视觉对比深度学习

    深度学习一种技术,它使用一种称为梯度反向传播的优化技术来生成“程序”(也称为“神经网络”),就像上面故事中学者学生编写的那些程序样。
    发表于 03-31 09:48 463次阅读

    基于机器视觉深度学习的焊接质量检测系统

    基于机器视觉深度学习的焊接质量检测系统一种创新性的技术解决方案,它结合了先进的计算机视觉
    的头像 发表于 01-18 17:50 835次阅读