0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

单体架构如何向分布式架构转型

jf_ro2CN3Fa 来源:芋道源码 作者:芋道源码 2022-10-20 10:28 次阅读


背景

我们在聊架构风格之前先明确一个问题,什么是架构?我们为什么要选择架构?用来解决哪些问题?

什么是架构

书本定义:“软件的架构是一种抽象的结构,他由软件的各个组成部分和这些部分之间的依赖关系构成”。

我的理解是,架构就是根据业务选择合适的技术、中间件,并且按照合适的设计模式对这些模块,进行组装来满足业务特性的需求。

选择架构风格的目的

我们选择架构风格的初衷在于 “三更原则”(自己的理解) :更好地降本提效、更快地发版上线、更好地维护系统稳定性。

任何一个架构风格,都可以实现功能性需求,但是一个好的架构风格能在功能性需求之上,提升非功能性需求。那么你可能会问,什么是非功能性需求?举例:扩展性、稳定性等等。

这里将会以我认知结合踩过的坑,来给大家详细讲一下,我们是如何从单体架构演进到分布式架构。在向分布式单体架构的演进的道路上,又是如何进行的抉择,以及为什么最后同时选择了 微服务架构+分布式架构 的原因。接下来就结合一个系统来作为案例,贯穿主线讲解。

首先来讲一下,最初的单体架构的经历和转型。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://gitee.com/zhijiantianya/ruoyi-vue-pro
  • 视频教程:https://doc.iocoder.cn/video/

单体架构

我们在系统创建之初,往往都是集中业务、单点部署系统,所有业务打一个包,快速上线。满足了业务初期的快速发版上线,而且适合中小公司没有自己的 PaaS 平台,应对初期快速迭代的业务,开发、迭代、测试、发布都是非常的便捷。那么单体架构都有什么类型呢?

单体架构类型

单体架构也分为大泥团架构、分层单体架构、模块化单体架构,他们的区别是什么呢?

  • 大泥团单体架构 :毫无分层、所有模块聚焦在一起,相互穿插(除非是你接手需要改造,否则不要创建这样的架构风格。这种大泥团架构很难拆分,到最后的下场往往都是重新搭建);
  • 分层单体架构 :普遍的选择。架构进行了简单的分层,比如传统的 MVC 三层架构;
  • 模块化单体架构 :一般是随着业务的发展,由分层单体架构演变而来,特点就是引入了多个业务模块并且提供相应的服务能力。

单体架构的优缺点

优点

  • 应用的开发很简单
  • 易于对应用程序大规模的更改
  • 测试相对简单、直观
  • 部署简单明了
  • 横向扩展不费吹灰之力

在业务的初期,单体架构的优点,无论从哪个方面来说,都优于其他架构风格,但是随着业务的增加、耦合,单体架构的缺点也逐渐暴露出来,这个也符合“康威定律”。那么单体架构的“后期”会暴露出哪些问题呢?

缺点

  • 代码库膨胀
  • 过度的复杂性会吓退开发者
  • 开发速度慢
  • 从代码提交到实际部署的周期很长,而且容易出问题
  • 难以扩展
  • 系统的稳定性得不到保障
  • 需要长期依赖某个可能过时的技术栈

单体架构的这些缺点,其实影响的还是我上面提到的“三更原则”。经过上面的铺垫,相信大家已经对单体架构风格已经有了简单的理解。

光有方法论是不行的,我们得结合项目以及代码片段来加深理解,做到真正的应用。接下来我就用一个库存系统来进行串联进行讲解。先通过这张图来了解下库存系统是用来做什么的?

  • 创建之初,1 个服务提供商品库存维护、库存查询、库存扣减能力。

  • 随着业务的发展,库存面向多个服务:B 端业务,平台内部业务系统、平台外部中台。C 端业务,订单商品扣减库存、网关查询库存数量。

06df0526-501e-11ed-a3b6-dac502259ad0.png

单体架构的案例——库存系统

最初的库存代码分层如下:

  • api :对外提供的 Dubbo 服务
  • common :封装了公共方法
  • dao :封装了数据库 DHCP 交互
  • domain :实体类
  • inner-api :系统内部 API 交互
  • router :废弃
  • rpc :上下游 RCP 交互
  • service :业务逻辑层
  • web :Web 服务层
  • worker :任务调度层
07015446-501e-11ed-a3b6-dac502259ad0.png

在最初很长的一段时间里,我们部署了两个单体服务。一个是 API 接口来保障上游的库存查询以及调用,另一个是 Web 服务的后台管理平台。这两个单体服务很好的贴合了最初的业务迭代和发版速度,但是后来随着业务的增加附加调用量的增加,单体服务的无论是从性能和稳定性都出现了较大的波动。

意料之外,情理之中的事故惨案

2015 年 6 月 26 日晚,也是一个促销活动的前夕,库存的 Web 管理平台挂了,原因就是大量库存导入,服务器的内存不足导致机器宕机。商家、运营无法通过导表的方式去维护库存数量,在这之前已经经历过了多次横向扩容。还是出现了预料之外的流量和稳定性的问题。

0711fe90-501e-11ed-a3b6-dac502259ad0.png

而且在接下来的大促过程当中,库存的单体服务 API 接口也承受了非常大的压力。

一方面是上游调用方有很多,比如 App 端首页中的门店网关,查询商品是否有库存,是否展示。购物车加车,也会查询商品库存的数量,提单则会对库存数量进行扣减,乃至后续的订单取消同样也会调用库存接口。

另一方面大的 KA 商家通过中台对接对库存进行操作,为了尽可能的让商家门店的库存和线上平台的库存保持一致,减少线上线下库存不一致导致的超卖、少卖。中台同步间隔时间都非常短,5 分钟~10 分钟就要全量同步一次。后续随着入驻的商家增多,这个量级增长得也非常的迅速。于是我们开启了单体服务向分布式服务演进的大门。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://gitee.com/zhijiantianya/yudao-cloud
  • 视频教程:https://doc.iocoder.cn/video/

分布式架构

分布式架构的优缺点

优点

  • 可用性高
  • 可扩展性高
  • 系统容错性高
  • 业务代码可读性高
  • 维护简单

这些优点正是我们当时库存系统欠缺的,尤其是其中的可用性、系统容错性,是我们系统演进迭代的首要目标。

《分布式架构体系》中描述到,分布式架构的核心理念也是按照(功能、业务、领域等)对系统进行拆分,通过合理的拆分结构,实现各业务模块的解耦,同时通过系统级容错设计,在廉价硬件基础设施上构建起高可用、可扩展的开放技术体系。

所以我们库存系统到底要按照什么进行拆分,功能?业务?领域?在拆分之前我们一定要明确设计的目标,避免目标方向错误带来的人力、成本资源的浪费。在弄清楚目标之前,我们先了解下分布式架构的缺点,通过了解这些缺点来衡量满足我们目标的前提下,需要进行哪些方面的取舍,就如 CAP 原则一样,只能满足其中的两个,AP 或者 CP。

2)分布式架构的缺点

  • 服务多,人员对拆分后的业务模块理解要花费一些成本
  • 技术栈升级耗费人力
  • 分布式事务的保持
  • 业务模块之间的 RPC 交互损耗

库存系统的特点,高可用、高并发、强数据一致性。接下来我们就来讲一下,库存是如何从单体架构向分布式架构进行的转型。

单体架构如何向分布式架构转型

因为库存面临的最大的问题是稳定性,所以我们首先针对功能进行了拆分。

1)功能拆分

这一步是相对简单的,我们梳理出库存面向服务的业务方进行服务划分。这部分无需进行太多代码的改造,一套接口通过变更不同的 group 别名,部署到不同的集群即可。

074d9108-501e-11ed-a3b6-dac502259ad0.png

拆分后,不同的服务应对不同的业务方,系统错误的隔离性好,不会说出现一损俱损的局面,稳定性上也有了保障。在解决了稳定性的问题后,留给我们了一些喘气的间隔,可以有时间去进行代码的优化。因为刚才也提到了,我们只是通过分布式的集群部署来解决容错性的问题,但是代码还是一套,臃肿的代码也会拖慢我们的开发上线速度。那么接下来要进行的就是,对业务代码的解耦,这块也是难度最高的。我们是如何做的呢?

2)业务拆分

业务拆分的思路是什么呢?

  • 以业务本身为导向,充分了解系统业务模型,划分业务边界;
  • 业务依赖的范围,细分功能,尽量减少功能之间的重复依赖;
  • 根据拆分功能的影响大小进行评估,拆小保大;
  • 拆分的过程中不要修改业务逻辑,不要进行拆分之外的任何优化动作(除非是bug)。

基于上述拆分的思路,库存系统又是如何划分的业务模块呢?动了哪些代码?

3)如何划分业务模块

关于业务划分,网上有很多方法论,事件风暴法、四色建模法等等,但是万法不离其宗,那就是围绕事件。以库存系统举例:库存初始化(门店 + sku 库存创建)、库存数量维护(修改现货数量、修改可售状态)、扣减业务(购物车扣减、提单扣减、订单取消扣减)、提醒业务(缺货提醒)等。每一个事件都有独立的链路轴,以及时间线可以形成闭环。

075a0a1e-501e-11ed-a3b6-dac502259ad0.png078961ba-501e-11ed-a3b6-dac502259ad0.png07a6ad1a-501e-11ed-a3b6-dac502259ad0.png

4)如何在原有模块上拆分

大多数单体架构都是面向过程的设计,domain 层充斥这个各种 DTO、VO、BO,所以在层与层的数据交互过程中,大都是经历了多次的 POJO。另外就是 Service 层充斥着和 DAO 层数据交互以及参杂了业务,而且严重违反了依赖倒置原则,整个层变得非常的沉重。这里举个例子:

  • 同层级间相互引用
  • Service 层包含了太多业务逻辑,无法保障原子性
07eff7ae-501e-11ed-a3b6-dac502259ad0.png

这里截取部分代码片段作为案例,来讲述下我们在拆分业务的过程中,需要做一些什么操作。

  • 对 Service 层进行 CQS 的拆分
  • 把业务逻辑从原有的 Service 层抽离,保障 Service 方法遵循 SRP 原则
  • 新增业务聚合层(或者向六边形架构里提到的 adapter 转接口)来聚合 Service 层的方法
081d378c-501e-11ed-a3b6-dac502259ad0.png

原始代码

@Service
publicclassSkuMainServiceImplimplementsSkuMainService{
privatestaticfinalorg.slf4j.LoggerLOGGER=LoggerFactory.getLogger(SkuMainServiceImpl.class);

@Resource
privateSkuMainDaoskuMainDao;
@Resource
privateZkConfManagerCenterServicezkConfManagerCenterService;
@Resource
privateProductImagesServiceproductImagesService;//同级互相引用,未遵循依赖倒置
@Resource
privateMqServicemqServiceImpl;

@Value("${system.group.environment}")
privateStringsystemGroupEnvironment;
/**
*问题:service层聚合了太多业务逻辑倒置上层方法没办法统一
*@paramskuMainInfoMQEntity
*@throwsException
*/
publicvoideditorSaveProuct(SkuMainInfoMQEntityskuMainInfoMQEntity)throwsException{
try{
SkuMainBeanskuMainBean=skuMainInfoMQEntity.getSkuMainBean();
if(skuMainBean==null){
thrownewException("修改参数为空!");
}

SkuMainBeanoriginalSku=this.getSkuMainBeanBySkuId(skuMainBean.getId());
if(originalSku==null){
thrownewException("无效SkuId!");
}

SkuMainBeanskuMainUpdate=updateIsWeightMark(skuMainBean);
SkuMainBeanskuMainPre=this.get(skuMainUpdate.getId());
//系统下架的商品强制下架
if(skuMainPre!=null&&skuMainPre.getSystemFixedStatus()!=null&&skuMainPre.getSystemFixedStatus().equals(SystemFixedStatusEnum.SYSTEM_FIXED_STATUS_DOWN.getCode())){
skuMainUpdate.setFixedStatus(FixedStatusEnum.PRODUCT_DOWN.getCode());
}

booleanflag=skuMainDao.editorProduct(skuMainUpdate);
if(flag){
if(!zkConfManagerCenterService.isDefaultStoreStatisticsScore(skuMainBean.getOrgCode())){
SkuMainBeansaveSkumainBean=this.get(skuMainUpdate.getId());
//防止未查到,把缓存覆盖
if(saveSkumainBean!=null){
cacheSkuMainBean(saveSkumainBean);
}
//发送Sku修改MQ
sendSkuModifyMq(SkuModifyOpSourceEnum.MIX_UPDATE_SKU,originalSku,newSkuMainInfoMQEntity(skuMainUpdate));
ProductImagesBeanproductImagesBean=productImagesService.queryImagesBySkuId(skuMainUpdate.getId());
SkuMainInfoCheckMQEntityskuMainInfoCheckMQEntity=newSkuMainInfoCheckMQEntity();
skuMainInfoCheckMQEntity.setSkuMainBean(skuMainUpdate);
skuMainInfoCheckMQEntity.setProductImagesBean(productImagesBean);
mqServiceImpl.sendJosMQ(skuMainInfoCheckMQEntity,MqTypeEnum.RcsKeyWordsCheck);
mqServiceImpl.sendJosMQ(skuMainInfoCheckMQEntity,MqTypeEnum.SenseKeyWordsCheck);
}else{
LOGGER.info("addopenplatformsku,notnotnotsendmq!skuId={}",skuMainBean.getId());
}
}
}catch(Exceptione){
LOGGER.error("修改商品信息失败.e:",e);
thrownewException(e);
}
}

CQS 和 SRP 的改造,拆解 GOD Classes

Read 服务

082efc4c-501e-11ed-a3b6-dac502259ad0.png

Write 服务

085fe26c-501e-11ed-a3b6-dac502259ad0.png

抽离到业务层 Business 层后

@Service
publicclassSkuMainBusinessServiceImplimplementsSkuMainBusinessService{
privatestaticfinalorg.slf4j.LoggerLOGGER=LoggerFactory.getLogger(SkuMainBusinessServiceImpl.class);

@Resource
privateZkConfManagerCenterServicezkConfManagerCenterService;
@Resource
privateMqServicemqService;
@Resource
privateSkuMainReadserviceskuMainReadservice;
@Resource
privateSkuMainWriteserviceskuMainWriteservice;

@Value("${system.group.environment}")
privateStringsystemGroupEnvironment;
/**
*问题:service层聚合了太多业务逻辑倒置上层方法没办法统一
*@paramskuMainInfoMQEntity
*@throwsException
*/
publicvoideditorSaveProuct(SkuMainInfoMQEntityskuMainInfoMQEntity)throwsException{
try{
SkuMainBeanskuMainBean=skuMainInfoMQEntity.getSkuMainBean();
if(skuMainBean==null){
thrownewException("修改参数为空!");
}
SkuMainBeanoriginalSku=skuMainReadservice.getSkuMainBeanBySkuId(skuMainBean.getId());
if(originalSku==null){
thrownewException("无效SkuId!");
}
SkuMainBeanskuMainUpdate=skuMainWriteservice.updateIsWeightMark(skuMainBean);
SkuMainBeanskuMainPre=skuMainReadservice.queryDbById(skuMainUpdate.getId());
//系统下架的商品强制下架
if(skuMainPre!=null&&skuMainPre.getSystemFixedStatus()!=null&&skuMainPre.getSystemFixedStatus().equals(SystemFixedStatusEnum.SYSTEM_FIXED_STATUS_DOWN.getCode())){
skuMainUpdate.setFixedStatus(FixedStatusEnum.PRODUCT_DOWN.getCode());
}
booleanflag=skuMainWriteservice.editorProduct(skuMainUpdate);
if(flag){
if(!zkConfManagerCenterService.isDefaultStoreStatisticsScore(skuMainBean.getOrgCode())){
SkuMainBeansaveSkumainBean=skuMainservice.queryDbById(skuMainUpdate.getId());
//防止未查到,把缓存覆盖
if(saveSkumainBean!=null){
skuMainWriteservice.cacheSkuMainBean(saveSkumainBean);
}
//发送Sku修改MQ
skuMainWriteservice.sendSkuModifyMq(SkuModifyOpSourceEnum.MIX_UPDATE_SKU,originalSku,newSkuMainInfoMQEntity(skuMainUpdate));
}else{
LOGGER.info("addopenplatformsku,notnotnotsendmq!skuId={}",skuMainBean.getId());
}
}
}catch(Exceptione){
LOGGER.error("修改商品信息失败.e:",e);
thrownewException(e);
}
}

构建好的业务层

087b2a36-501e-11ed-a3b6-dac502259ad0.png

拆分小结

拆分到这里,业务层的划分基本就比较清晰了。而且在这个增量整合底层代码的过程中,面向过程的业务线也都梳理的比较清晰了,底层方法也都提取到了业务层收口,通过接口对外提供服务。那么接下来我们要面临的问题就是,如何对具体的读写进行拆分。

基于 CQRS 打造分布式服务

上面我们也提到了,进行了整体功能的拆分,并没有对具体的读写服务的拆分。在面向服务的场景下,功能里也是分读服务、写服务。那么我们有什么原则来指导读写服务的分离么?那就是 CQRS 的思想:命令职责查询分离,不单单指代码,同样也是适用于服务。

092340fe-501e-11ed-a3b6-dac502259ad0.png

优先拆分读还是优先拆分写

建议从拆分读开始,因为读服务相对于写服务简单一些,而且更容易提高系统对外服务的稳定性,写服务的流程相对底层改动比较大,测试的周期也会比较长。在前期,动写服务系统出问题的概率会比较大,所以综合稳定性、扩展性来说,优先拆分读服务是一个比较好的选择。

CQRS 的思想适合所有业务场景吗?

以库存系统举例,我们就按照 CQRS 的思想复刻一版,看看会出现什么问题。

  • 每一次修改同步库存写入任务表
  • schedule 任务读取任务表
  • 把任务表的修改数据同步到 Read 服务中的 Redis 中

在这个过程中,存在两个问题:

  • 大数据量任务同步的问题:也就是 Event Bus 同步 Redis 的数据同步速度问题。

  • 延迟问题:库存要求实时性非常高,如果因为任务积压导致的延迟,会让库存陷入困境之中。大量的库存数量不对导致的超卖、超卖会瞬间击溃业务。

094d025e-501e-11ed-a3b6-dac502259ad0.png

所以每一个架构、每一种思想都是要结合业务去分析。我们可以借鉴 CQRS 的命令查询职责分离,在面对业务系统部署的时候,不要死板的遵循固有的模式,要对现有的风格做出一定的取舍。所以,我们在应对库存业务的时候,基于 CQRS 的风格创建出了库存独有的 CQRS-StockCenter。

CQRS 的活学活用:CQRS-StockCenter

  • business 业务层写入命令
  • writeService 服务写入读服务 Redis
  • MQ 消息作为异步数据补全写入 MySQL 备份、写入流水
09921a60-501e-11ed-a3b6-dac502259ad0.png

库存通过这套设计强依赖了 Redis 来作为库存查询、修改的中间件。保障了数据的强一致性。库存在原有的服务上,分离了读写,保障了系统的 CQRS 命令职责查询分离。

0a01606e-501e-11ed-a3b6-dac502259ad0.png

分布式事务

大家都知道事务。简单来说,事务由一组关联操作构成,A->B->C ,如果执行到C报错了,那么要回滚 B->A。

对于本地事务来说,这个相对很简单,如果你用了事务型数据库比如 MySQL,并且不涉及多个数据源的情况下,保障事务的 ACID 非常的容易。但是我们这里要提到的就是分布式事务。

系统拆分后,由于每个服务是一个独立的模块,负责一块业务,那么在整个业务轴的流程下,各个服务节点的跨系统事务回滚成为了一个难题。

业界也有一些方案,比如 JTA(Java Transaction API 即 Java 事务 API)和 JTS(Java Transaction Service 即 Java 事务服务),为 J2EE 平台提供了分布式事务服务。

但是,这种需要满足 XA(两阶段提交)的标准非常的重。而且现在的业务多样性,很多数据库比如 MongoDB,并不支持 XA 的标准分布式事务,一些流行的中间件,比如 RabbitMQ 和 Kafka 也不支持分布式事务。

审核编辑 :李倩


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 模块
    +关注

    关注

    7

    文章

    2535

    浏览量

    46753
  • 代码
    +关注

    关注

    30

    文章

    4596

    浏览量

    67327
  • 架构
    +关注

    关注

    1

    文章

    493

    浏览量

    25324

原文标题:单体架构服务转型至分布式的踩坑经历

文章出处:【微信号:芋道源码,微信公众号:芋道源码】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    Redis是怎么从单体架构发展到分布式缓存的?

    Redis 架构是如何一步一步发展到今天的样子的?
    的头像 发表于 04-20 15:37 584次阅读
    Redis是怎么从<b class='flag-5'>单体</b><b class='flag-5'>架构</b>发展到<b class='flag-5'>分布式</b>缓存的?

    什么是分布式架构?

    分布式架构是指将一个系统或应用拆分成多个独立的节点,这些节点通过网络连接进行通信和协作,以实现共同完成任务的一种架构模式。这种架构模式旨在提高系统的可扩展性、可靠性和性能表现。 一、
    的头像 发表于 01-12 15:04 688次阅读
    什么是<b class='flag-5'>分布式</b><b class='flag-5'>架构</b>?

    鸿蒙原生应用开发——分布式数据对象

    01、什么是分布式数据对象 在可信组网环境下,多个相互组网认证的设备将各自创建的对象加入同一个 sessionId,使得加入的多个数据对象之间可以同步数据,也就是说,当某一数据对象属性发生
    发表于 12-08 10:01

    分布式系统硬件资源池原理和接入实践

    把各个设备的硬件外设抽象为外设信息单元,外设信息在各个可信设备之间自动同步,如此,实现了外设信息的全局可见;结合分布式硬件虚拟化技术,实现任意设备之间的硬件外设能力跨设备调用;分布式硬件资源池作为系统
    发表于 12-06 10:02

    分布式全闪架构的演进之路

    无共享体系结构 (SNA:Shared-Nothing Architecture) 是一种分布式计算体系结构,其中每个更新请求都由计算机群集中的单个节点(处理器/内存/存储单元)满足。目的是消除节点
    的头像 发表于 11-27 10:12 501次阅读
    <b class='flag-5'>分布式</b>全闪<b class='flag-5'>架构</b>的演进之路

    springclould分布式教程

    的基本概念、主要组件以及如何使用Spring Cloud构建分布式系统。 一、Spring Cloud的基本概念 分布式系统 分布式系统是由多个独立计算机集合而成的系统,这些计算机通过网络进行通信和协作,共同完成系统的任务。 微
    的头像 发表于 11-16 10:59 300次阅读

    HarmonyOS分布式文件系统开发指导

    各个设备结点提供一个全局一致的访问视图,支持开发者通过基础文件系统接口进行读写访问,具有高性能、低延时等优点。 分布式文件系统架构 ● distributedfile_daemon:主要负责设备上线
    发表于 11-14 17:14

    基于EA的企业数字化转型架构的设计

    从数字化转型的定义上看,至少包含两个方面:一方面是商业模式的转型,一方面是技术的升级。因此,数字化转型架构是由业务架构、技术
    的头像 发表于 10-29 14:51 943次阅读
    基于EA的企业数字化<b class='flag-5'>转型</b><b class='flag-5'>架构</b>的设计

    分布式智慧指挥系统:引领指挥控制系统转型升级的新篇章

    随着信息技术的飞速发展,传统的指挥控制系统已经难以满足现代战争的需求。讯维分布式智慧指挥系统作为引领指挥控制系统转型升级的新篇章,为作战指挥提供了更加高效、智能的解决方案。 讯维分布式智慧指挥系统
    的头像 发表于 09-05 11:48 587次阅读

    分布式节点包含哪些先进技术

    讯维分布式节点包含以下先进技术: 分布式架构:讯维分布式节点采用分布式架构,将多个节点设备连接起
    的头像 发表于 08-28 11:49 864次阅读
    <b class='flag-5'>分布式</b>节点包含哪些先进技术

    分布式控制系统的基础架构和原理。

    ,各子系统之间通过高速通信网络进行数据传输和指令交互。 以下是讯维分布式控制系统的基础架构和原理:   控制模块:负责接收并处理各种传感器数据,根据预设逻辑输出控制指令。控制模块可以部署在多个节点上,每个节点负责处
    的头像 发表于 08-28 11:44 718次阅读
    <b class='flag-5'>分布式</b>控制系统的基础<b class='flag-5'>架构</b>和原理。

    OpenHarmony 分布式硬件关键技术

    ,华为OpenHarmony技术专家,OpenHarmony分布式硬件技术负责人。主要负责OpenHarmony分布式硬件架构设计以及华为多设备协同方向的研究。 内容来源 第一届开放原子开源基金会
    发表于 08-24 17:25

    分布式节点的性能优势

    随着大数据、云计算和人工智能等技术的快速发展,分布式节点在处理海量数据和复杂任务方面具有显著优势。讯维分布式节点作为一种新兴的技术架构,以其高性能、高可用性和低能耗等特性,成为了许多企业和机构的首选
    的头像 发表于 08-23 15:32 1862次阅读

    #分布式数据

    分布式数据
    未来加油dz
    发布于 :2023年07月03日 22:58:32

    数字化转型下我国分布式数据库应用挑战及发展建议

    当前,金融等重点行业都在进行数字化转型,而分布式数据库作为数据承载工具,为数字化转型提供了有力的支撑。分布式数据库近年来发展迅猛,在产品成熟度上有了很大提升,但在行业应用和生态建设上仍
    的头像 发表于 06-29 16:45 439次阅读