0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

体相扩散率和界面形貌对金属负极剥离容量的影响

清新电源 来源:清新电源 作者:然 2022-10-21 09:45 次阅读

研究背景

作为锂离子电池负极材料,金属锂因其高比容量(3860 mAh·g-1)而备受关注。然而,锂的体相扩散率往往是决定循环行为的一个限制因素。特别是,在固态电池循环过程中,需要锂原子的快速体扩散来维持金属锂电极与固体电解质之间的界面接触。

锂合金的使用有助于与固体电解质形成更稳定的界面。这通常归因于锂合金中锂的快速扩散。据报道,许多合金的锂扩散率显著超过锂自扩散率。Mg在Li中的溶解度范围非常宽(图1a),因此,锂镁电极在电化学循环过程中可能不发生相变,从而有望提供更好的微观结构稳定性。然而,Li-Mg合金中的锂扩散率值在文献中存在差异。

成果简介

近日,牛津大学Chris R. M. Grovenor教授ACS Energy Letters上发表了题为“On the Relative Importance of Li Bulk Diffusivity and Interface Morphology in Determining the Stripped Capacity of Metallic Anodes in Solid-State Batteries”的论文。该工作用同位素示踪法研究了锂在Li-Mg合金中的扩散率,发现镁的存在减缓了锂的扩散。

在大的剥离电流下,脱锂过程是扩散限制的,因此锂金属电极比锂镁电极产生更大的容量。然而,在较低的电流下,从锂镁电极中可以提取更多的锂,证明合金可以保持一个更稳定的扩散路径到固体电解质表面,从而提高了锂的有效扩散率。

研究亮点

(1)本工作通过使用同位素示踪法直接测量锂在锂镁合金中的锂扩散率。为此,通过耦合两种具有不同同位素浓度的材料来制备同位素异质结构。为了确保两种材料之间的紧密接触,使用热蒸发将示踪同位素薄膜沉积在不同同位素浓度的样品上。图1b显示,安装在等离子体聚焦离子束(PFIB)仪器中的二次离子质谱(SIMS)探测器用于跟踪同位素浓度随深度的变化,从中可以得出扩散系数。

(2)SIMS分析显示,锂在Li-Mg合金中的扩散率比锂在金属锂中的自扩散率低约1个数量级。因此,使用锂镁合金负极使得固态电池性能改善不是因为锂扩散率增加导致的。当采用石榴石固体电解质时,金属锂在大剥离电流密度下优于合金负极。然而,低温PFIB切片研究显示,合金负极与固体电解质的接触更稳定,因此在较小的剥离电流密度和无外部压力下能够获得更大的容量。

d0fdd61e-50de-11ed-a3b6-dac502259ad0.png

图 1、(a)Li-Mg体系的平衡相图。(b)用SIMS测量扩散率的实验装置。

图文导读

为了研究金属锂的自扩散,将厚度为~5 μm的7Li薄膜热蒸发到6Li上。为了测量7Li-Mg合金中的扩散,6Li被蒸发到合金表面。图2显示了从热蒸发开始60分钟,同位素示踪剂在不同基质中的典型扩散分布图。

d1285de4-50de-11ed-a3b6-dac502259ad0.png


图 2、从示踪物沉积开始60分钟后,示踪同位素进入基质的过量浓度SIMS扩散曲线。从顶部开始:7Li变成6Li,然后6Li变成7Li1–xMgx,x=0.1、0.2和0.3。通过横断面二次电子成像推断出示踪剂与衬底之间原始界面的位置

根据图2中7Li向6Li的扩散分布,计算出锂自扩散(示踪剂扩散)系数DLi*为(1.6±0.1)×10-10cm2·s-1,与以往文献报道基本一致。然而,锂在锂镁合金中的扩散率并没有得到改善。基于图2中的扩散曲线,在10、20和30 at.%Mg时,锂的本征扩散系数DLi分别为(2.4±0.1)、(2.6±0.1)和(1.4±0.2)×10–11cm2·s–1这种较慢的扩散率也可以在图2中看到,在所有情况下,Li-Mg合金上示踪同位素的表面浓度都大于金属锂。

Li-Mg合金中的β相是一种置换固溶体,由于Li和Mg的戈德施密特半径只有几个百分点的差异,因此可以假设锂在Li-Mg中的扩散机制与锂单质中相同,都是通过空位扩散。金属锂和锂镁合金材料之间的另一个可能影响测量扩散率的差异是晶粒尺寸,但所有材料的晶粒尺寸都在100 μm量级,因此晶界对整体扩散通量的贡献应该是相似的,可以忽略不计。

当考虑锂通量扩散到Li-Mg合金中时,存在一个成分梯度,该梯度会引入相关的活性梯度,但一般来说,向较低熔点基体A中添加较高熔点的元素B应会降低DA的值。

测出的DLi值与文献中基本一致,例如Korblein等人(使用核磁共振<7×10–11cm2·s–1)和Zhang等人(使用中子断层扫描技术6×10–11cm2·s–1),以及Krauskopf等人(3×10–11cm2·s–1)对Li-Mg合金与固体电解质接触的研究。静电位电化学滴定法测得的Li-Mg合金中锂扩散率更高,与文献的差异较大,这可能是由于电化学方法得到的扩散系数受合金微观结构及其表面形貌的影响,多孔结构越大扩散系数越大。

事实上,对于这种方法,计算扩散系数需要知道合金的真实表面积。这些不确定性的来源会导致扩散率误差高达4个数量级。而这里使用的示踪剂扩散法能够直接探测体扩散率,而不需要模型假设。

根据Schmalzried和Janek的模型预测,本研究中发现锂的自扩散率DLi*过低,即使在较小的电流密度(50-200 μA·cm-2)下,锂电极也无法与固体电解质保持形貌稳定的界面,因此除非施加较大的外部压力,否则在剥离过程中会形成空洞。锂镁合金中DLi值越小,说明锂镁合金负极的锂化和剥离动力学越慢。

通过将锂和Li0.9Mg0.1电极与锂石榴石固体电解质Ta:LLZO接触,并进行剥离实验证实了这一点。在剥离过程中不施加外部压力,即负极中的锂通量只取决于锂扩散率,可以排除蠕变变形的影响。图3a显示了在1 mA·cm-2下的剥离电位曲线。当固体电解质表面的锂浓度降低时,电池的极化随时间增加而增加。

用低温PFIB对这些界面进行横切面分析(图3b),结果表明,对于金属锂电极来说,界面形成了大的空隙,几乎完全与电解质失去接触。然而,Li0.9Mg0.1合金电极能够与固体电解质保持更稳定的接触形态。锂以相同的速度从两个电极中剥离出来,尽管使用Li0.9Mg0.1很大程度上防止了大空隙的形成,但其较慢的体相锂扩散率(DLi)使得只能剥离有限容量的锂。

有趣的是,如果Li0.9Mg0.1电极在第一次脱锂后停留几个小时,由于维持了扩散路径,锂可以扩散回固体电解质表面,在随后的剥离步骤中可以获得一些额外的容量(图3a)。相比之下,锂金属电极和固体电解质之间完全失去接触,在没有外部压力的情况下无法恢复接触,即使在休息期之后也无法继续剥离。

d17bf710-50de-11ed-a3b6-dac502259ad0.png


图 3、(a)在1 mA·cm-2和0.1 mA·cm-2下,锂和Li0.9Mg0.1电极的剥离实验。(b)在1 mA·cm-2下,工作电极剥离后的低温PFIB截面二次电子图像

图3a显示,当使用较小的剥离电流(0.1 mA·cm-2)时,锂金属电极获得了相似的容量,这表明在不施加外部压力的情况下,在相同的剥离容量后形成了类似数量的空洞。然而,由于Li0.9Mg0.1能够与固体电解质保持良好的接触,从Li0.9Mg0.1电极中脱出的容量是1 mA·cm-2下的4倍多。这一结果表明,如果脱锂速率足够低,锂原子的体相扩散可以向界面提供足够的通量。

在实际运行条件下,合金电极的锂活性会发生变化,且很难预测,这可能会改变锂扩散率(DLi应取决于锂的局部浓度)和电荷转移效率。然而,从上面报道的结果和以前的研究中可以发现,扩散系数会随着镁含量的增加而减小,这与熔化温度的急剧升高是一致的(见图1a)。

然而,锂镁合金似乎能够通过部分脱锂的锂镁相,使负极主体中的锂原子连续进入固体电解质表面,而锂不会通过锂电极中的空隙扩散。因此,可以通过考虑有效锂扩散率来理解锂镁合金的行为,该扩散率考虑了锂的体扩散率,以及不同的孔隙形态控制电极和固体电解质之间接触面积的方式。当锂金属电极中形成空洞时,其有效扩散率迅速下降。锂镁电极具有较小的初始有效扩散率,但在循环过程中界面形貌更稳定,因此在小剥离速率下提高了容量。

在锂扩散率实验期间,应注意尽量减少蒸发示踪薄膜与6Li或7Li-Mg衬底之间的界面污染。然而,一些污染是不可避免的。为了了解其对锂扩散率的影响,图4a比较了7Li到6Li的两个扩散曲线,其中6Li衬底是在7Li示踪物沉积之前在具有不同污染程度的手套箱中制备的。

在含有~1ppm H2O和O2的手套箱中,用SIMS采集的18O信号显示,原始7Li–6Li界面处有一个明显的峰,表明控制较差的环境中,6Li表面受到污染。在这种情况下,测量到的扩散系数比之前报道的值低一个数量级,所以即使是少量的污染也会对测量到的锂扩散率产生很大的影响。

d20d4c4c-50de-11ed-a3b6-dac502259ad0.png


图 4、(a)示踪剂沉积开始后60分钟,7Li向6Li的扩散曲线,包括18O SIMS信号。上图:在H2O和O2含量<0.1 ppm的手套箱中制备的6Li基底。下图:在H2O和O2含量~1 ppm的手套箱中制备的6Li基底。(b)6Li(左)和7Li0.9Mg0.1(右)新鲜表面的Li 1s和Mg 2p XPS信号。采用Ar+进行深度溅射。

另外,还通过XPS分析研究了6Li和Li-Mg表面的污染程度(图4b)。即使是新鲜的表面也含有一些来自锂氧化物和氢氧根的信号,但在XPS室中进行原位Ar+溅射可以揭示底层的金属信号。在所有电极表面都可以看到相同的污染物种类。因此,在金属锂和锂镁合金上,表面污染对锂扩散率测量的影响应该是相似的。

总结与展望

本工作利用同位素示踪法研究了锂在10、20和30 at.%的锂镁合金中的扩散率,以及锂的自扩散率,其中采用SIMS跟踪同位素扩散。结果表明,锂在Li-Mg中的扩散率(∼2×10–11cm2·s–1)大大低于锂的自扩散率(1.6×10–10cm2·s–1)。尽管锂镁合金中锂体扩散率较小,但如果使用相对较小的电流密度,锂镁合金可以提供比锂金属电极更大的剥离容量。

这是因为Li-Mg合金与固体电解质能够保持稳定的界面接触,从而使得锂原子可以持续扩散到电解质表面。也就是说,界面形态的改善提高了运行稳定性。而锂金属电极中的大空隙阻碍了锂原子的传输,即使负极中的体扩散系数较大。然而,当使用较大的电流密度时,锂镁合金电极中较慢的体扩散动力学最终会限制剥离容量,因此在这些条件下,锂金属电极性能更好。

如果要在大电流密度下使用固态电池,那么寻找具有快速锂体扩散率的锂合金仍然很重要。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3242

    浏览量

    77763
  • 固态电池
    +关注

    关注

    10

    文章

    700

    浏览量

    27836
  • 固体电解质
    +关注

    关注

    0

    文章

    46

    浏览量

    8402

原文标题:牛津大学ACS Energy Lett.:体相扩散率和界面形貌对金属负极剥离容量的影响

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    利用液态金属剥离制备二维纳米片(2D NSs)的方法

    本文介绍了一种利用液态金属镓(Ga)剥离制备二维纳米片(2D NSs)的方法。该方法在接近室温下通过液态镓的表面张力和插层作用破坏范德华力,将块体层状材料剥离成二维纳米片。此外,该过程还能在常温下
    的头像 发表于 12-30 09:28 74次阅读
    利用液态<b class='flag-5'>金属</b>镓<b class='flag-5'>剥离</b>制备二维纳米片(2D NSs)的方法

    筛选理想的预锂化正极应用于无负极金属锂电池

    研究背景无负极金属电池(AF-LMBs)在初始组装过程中移除了负极侧的锂,可以实现电芯层面的能量密度最大化,与此同时还具备成本和存储优势。然而,在没有负极侧锂补偿的情况下,任何不可逆
    的头像 发表于 12-24 11:07 253次阅读
    筛选理想的预锂化正极应用于无<b class='flag-5'>负极</b><b class='flag-5'>金属</b>锂电池

    多功能高熵合金纳米层实现长寿命无负极金属电池

    论文简介 本研究报道了一种新型的无负极金属电池(AFSMBs),通过在商业铝箔上构建一层由高熵合金(NbMoTaWV)组成的纳米层,显著提高了电池的循环稳定性和钠金属的沉积/剥离可逆
    的头像 发表于 12-18 10:29 345次阅读
    多功能高熵合金纳米层实现长寿命无<b class='flag-5'>负极</b>钠<b class='flag-5'>金属</b>电池

    导体和绝缘的电阻比较 电阻检测技术的发展趋势

    导体和绝缘是两种不同的材料,它们在电学性质上有着显著的差异。导体是指那些能够容易地传导电流的材料,而绝缘则是指那些不容易传导电流的材料。这些差异主要体现在它们的电阻上。 导体和绝缘
    的头像 发表于 12-02 14:29 257次阅读

    如何提高金属探测器探测

    要提高金属探测器的探测,可以从以下几个方面入手: 一、选择合适的金属探测器 技术性能 :选择技术性能先进的金属探测器,通常具有更高的灵敏度和准确性,能够检测到更微小的
    的头像 发表于 11-29 11:14 427次阅读

    通过电荷分离型共价有机框架实现对锂金属电池固态电解质界面的精准调控

    (-3.04 V vs SHE),被认为是次世代电池的最优选择。然而,锂金属负极的实际应用面临诸多挑战,其中最关键的问题是锂枝晶的生长和副反应的发生。这些问题不仅会导致电池寿命急剧下降,还会引发严重的安全隐患,如短路和热失控。 固态电解质
    的头像 发表于 11-27 10:02 326次阅读
    通过电荷分离型共价有机框架实现对锂<b class='flag-5'>金属</b>电池固态电解质<b class='flag-5'>界面</b>的精准调控

    什么是渗透作用_金属封装又是如何发生渗透

    气体的稳态流称为渗透。   渗透的全过程:吸附→气体分子离解(对于金属壳体材料)→在表层达到平衡溶解度→向内侧扩散→在管壳内壁表面上,离解的气体原子重新结合为分子态→脱附和释出。 
    的头像 发表于 11-22 10:27 301次阅读

    全固态锂金属电池的锂阳极夹层设计

    金属锂和电解质的消耗。锂离子的不均匀沉积/剥离导致锂枝晶的生长和电池安全风险,阻碍了锂金属电池(LMB)的进一步开发和商业应用。由于对机理的了解不够,锂枝晶生长和高界面电阻仍然具有挑战
    的头像 发表于 10-31 13:45 220次阅读
    全固态锂<b class='flag-5'>金属</b>电池的锂阳极夹层设计

    石墨负极在锂离子电池中的发展与储锂机制

    近日,清华大学张强教授团队总结并展望了石墨负极界面的调控方法及其对锂离子电池电化学性能的影响机制,重点介绍了石墨负极在锂离子电池中的发展与储锂机制、炭负极的表
    的头像 发表于 10-28 11:28 1078次阅读
    石墨<b class='flag-5'>负极</b>在锂离子电池中的发展与储锂机制

    一种新型的钠金属电池负极稳定化策略

    金属电池因其高理论能量密度和低氧化还原电位而具有广泛的应用前景。然而,钠金属阳极与电解液之间不可避免的副反应、钠金属在循环过程中形成的钠枝晶,以及界面上不均匀的电场分布,都会导致电池
    的头像 发表于 10-28 09:36 342次阅读
    一种新型的钠<b class='flag-5'>金属</b>电池<b class='flag-5'>负极</b>稳定化策略

    外延片和扩散片的区别是什么

    外延片和扩散片都是半导体制造过程中使用的材料。它们的主要区别在于制造过程和应用领域。 制造过程: 外延片是通过在单晶硅片上生长一层或多层半导体材料来制造的。这个过程通常使用化学气沉积(CVD)或
    的头像 发表于 07-12 09:16 889次阅读

    具有分级脱嵌锂机制的Li多相合金负极

    金属以其高容量(比石墨负极高10倍)、低氧化还原电位(-3.04 V vs.标准氢电极)和轻量化(0.534 g cm-3)而引人注目。
    的头像 发表于 02-26 09:09 1010次阅读
    具有分级脱嵌锂机制的Li多相合金<b class='flag-5'>负极</b>

    弱溶剂化少层碳界面实现硬碳负极的高首效和稳定循环

    钠离子电池碳基负极面临着首次库伦效率低和循环稳定性差的问题,目前主流的解决方案是通过调节电解液的溶剂化结构,来调节固体电解质界面(SEI),却忽略了负极-电解液界面对于溶剂化鞘的影响。
    的头像 发表于 01-26 09:21 1665次阅读
    弱溶剂化少层碳<b class='flag-5'>界面</b>实现硬碳<b class='flag-5'>负极</b>的高首效和稳定循环

    全固态锂金属电池负极界面设计

    全固态锂金属电池有望应用于电动汽车上。相比于传统液态电解液,固态电解质不易燃,高机械强度等优点。
    的头像 发表于 01-16 10:14 826次阅读
    全固态锂<b class='flag-5'>金属</b>电池<b class='flag-5'>负极</b><b class='flag-5'>界面</b>设计

    通过金属负极/LPSCl界面调控实现超稳定全固态锂金属电池

    为解决传统锂离子电池能量密度不足、安全性低等问题,部分研究者将目光投向全固态锂金属电池。
    的头像 发表于 01-09 09:19 2120次阅读
    通过<b class='flag-5'>金属</b><b class='flag-5'>负极</b>/LPSCl<b class='flag-5'>界面</b>调控实现超稳定全固态锂<b class='flag-5'>金属</b>电池