0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

【干货】一文读懂RLC无源滤波电路设计全过程

硬件电子工程师. 来源:硬件电子工程师. 作者:硬件电子工程师 2022-10-21 11:15 次阅读

【摘要】

电源电路设计中常见RC/磁珠电容滤波,两种滤波电路滤波效果有什么差异呢?本文将对RC滤波电路、磁珠电容滤波电路进行了理论分析、仿真分析,并对实际使用情况进行了频谱测量分析。最终经过分析、仿真、实测给出推荐滤波电路。

一、问题的提出

电源滤波电路的目的是通过电路,将电源模块上的噪声和纹波去除掉。常用的无源滤波电路有磁珠电容滤波电路和RC滤波电路两种,两种滤波电路所使用的场合和条件不同,作用也不一样。另外,参数的选择也很关键。工程设计中大部分使用的是PI型滤波,使用较多电路如下:

poYBAGNSDQiATV8NAAAJwXe3p2w987.png

这个电路的问题在于,由于磁珠和电容器件参数设置不优,对于一些在低频部分(10KHz-1MHz)噪声较大的电源,不能很好的起到电源滤波的作用。下面是使用该滤波网络的PPC模块(时钟模块)时钟输出的频谱图。可以很明显的看到在300KHz和230KHz附近有开关噪声的存在,而且其与主频之间的能量差最大为-49dB左右。该电路需要优化,否则这样送出的时钟作为高速信号的参考时钟是存在误码风险的。

pYYBAGNSDRKAK6rcAADfz-wyVrM689.png

二、解决方法

1、理论分析

(1)RC滤波电路

RC滤波电路的模型如下:

poYBAGNSDSCAGTTPAAA71SJBZao241.png

电路上的方程为:

poYBAGNSDSmARJ_cAAAGTWOyHqE349.png

其中

pYYBAGNSDS2AEHvBAAADlo3Vc7c203.png

代入得到:

poYBAGNSDTOABt9BAAAIWRDJQBE171.png

对上面的公式两边取拉式变换得:

pYYBAGNSDTmABUvYAABE8SIQ0S4410.png

系统的传递函数是

poYBAGNSDT-ACUknAAAGgglMy58990.png

幅频曲线

pYYBAGNSDVaAQEMzAAAIj-UhAwo484.png

其波特图的斜率是-20dB

pYYBAGNSDUiAMoMQAABBQQV4XaM682.png

当w=1/RC时,为其-3dB的截止频率,即f=1/(2πRC)

(2)磁珠电容滤波电路

再来看看磁珠电容滤波电路的情况,这里的L选取的是磁珠,电感由于所占的体积较大,不适合电路普遍推广,电感可在有特殊需求的场合下使用。

磁珠可看做是一个LRC并联的系统,低频段显现的是感性,中频段显现的是阻性,高频段显现的是容性。

poYBAGNSDc6Ac-AHAAAzKKA5Vjo330.png

为了电路的分析方便,磁珠我们暂时只把它当做电感和直流等效电阻串联的模型。整个LC滤波电路电路的模型如下:

poYBAGNSDdeAVpB-AAA0XUYvKzI164.png

该模型的传递函数与幅频曲线的推导过程可参见相关书籍资料,本文直接使用推导的结论:

pYYBAGNSDeOAANUqAAASMPquQeI399.png

wmax为出现极值点的频率,及幅频曲线极大值时的频率。L为磁珠的感抗值C为滤波电容值,r1为磁珠的直流等效电阻,r2是电容的直流等效电阻。幅频函数如下:

poYBAGNSDfCAQWegAAAzwI3TpQA615.png

可以看出,wmax,与LC相关,同时与r1与r2相关,在L和r1值确定的情况下,C越大,r2值越大,wmax最小。

在L和r1确定的情况下,C越大,r2值越大,越小,超调量越小。

2、仿真分析

磁珠电容滤波电路的情况,原始电路模型如下:

poYBAGNSDfmAUrp9AABXHBaykH8988.png

仿真的幅频曲线如下:

poYBAGNSDgWASrYtAAHBqcjPi0c625.png

f-3dB=44.5kHz,增益峰值为6.75 dB 其在300kHz的幅值是-38dB。

根据理论分析的结果,提高电容的C值与电容对应的ESR的值,可以使wmax减小,在wmax值处的超调量减小

我们加入了大ESR的10uf的钽电容进行仿真分析,使用的电路模型是

pYYBAGNSDhCACEZzAABSJV_aU6A372.png

仿真的幅频曲线如下:

poYBAGNSDiKAS1vdAAHBMdx6F2c352.png

f-3dB=39.5kHz,增益峰值为1.112 dB其在300kHz的幅值也是-38dB。

从上面两图对比来看,加入了大ESR,大电容值的阻尼电容,确实使得峰值的频率由44.5kHz转移到39.5kHz,增益的峰值也由6.75 dB降为了1.112 dB。但是在300kHz附近的幅频曲线的幅值变化不大,都在-38dB左右。

对RC的情况进行仿真,电路模型如下:

poYBAGNSDSCAGTTPAAA71SJBZao241.png

仿真的幅频曲线结果如下:

poYBAGNSDjeAbCZjAADsOXhlGv4450.png

与理论计算结果基本一致,f-3dB=7.233kHz,其在300kHz的幅值是-32dB

后面实测发现,使用1欧姆的电阻,如果电路电流过大,会导致在电阻上的压降过大,引起电路不稳定。采用了改进的RC电路,将电阻阻值设置为0.15欧姆,电容C设置为较小ESR的100uf陶瓷电容。电路模型如下:

pYYBAGNSDj-AE7AHAABNiD9bUfs452.png

仿真的幅频曲线结果如下:

poYBAGNSDkeATlejAAAgthJpK3A608.png

与电阻采用1欧姆,电容采用22uf的仿真情况基本一致。

3、实验结果

磁珠电容滤波电路的改进措施:在磁珠后并联一个大ESR(0.55欧姆),大容值(100uf)的普通钽电容,测得的频谱如下,将300kHz左右的开关噪声由-49dB降低为-63dB,减小的幅度为14dB。其他频率的噪声也有较大的衰减。

pYYBAGNSDlKAexGIAAVMWgsxBqw054.png

RC的改进措施:将磁珠更换为电阻,改原来的LC滤波为RC滤波。开始使用的电阻阻值为1欧姆,但是1欧姆的电阻串联在电路中是很不妥的,不能用于较大电流(百mA级)电路,因此需要使用较小阻值的电阻(0.15欧姆)。为了达到较好的滤波效果,与0.15欧姆电阻配合使用时,我们使用低ESR的陶瓷电容,容值为100uf。

测试的幅频曲线如下:将300kHz左右的开关噪声由-49dB降低为-73dB,减小的幅度为24dB。其他频率的噪声也有较大的衰减。

poYBAGNSDlmAUByEAAVA45KBUEo505.png

可以看出实测使用RC电路的效果要比使用LC电路的效果要好,但是仿真时候结果是LC的电路在300kHz时的幅值为-38dB,RC电路在300kHz时幅值为-29dB。这可能与仿真的模型与实际情况有偏差有关:

(1)实际电路除了仿真的主电容外,还有其他容值的电容,会对实际电路的最后结果产生影响。

(2)磁珠是个较为复杂的器件,其受到温度影响较大;使用仿真的模型也不能完全将其特性反映出来。(真实原因是什么呢?其实我也想知道(* ̄︶ ̄))

三、总结

1、低频滤波电路适合使用RC电路。因为小封装的磁珠电感值较小,对低频不能起到很好的滤波效果;RC电路易于实现,对低频的效果很明显。

2、高频滤波电路适合使用有磁珠的LC电路。因为磁珠在高频中就扮演着高频电阻的作用,能够有效的滤除高频杂音成分。但从实际测量的相噪中可以看出,RC电路与LC电路在高频部分的底噪相差不大,这是由于主电容外的其他容值的小电容起作用的结果。

3、使用RC电路与使用有磁珠的LC电路都应该注意压降的问题。RC电路尤其要注意,不能将该滤波电路放置在有大电流的电路。因为RC电路本身会耗能,并且效率较差,且要注意电阻所能承受的功率。比如上面使用的0.15欧姆的电阻,其所能承受的功率为1/8瓦,换算成电流为不超过900mA。

4、推荐电路如下:

pYYBAGNSDnKAGNpnAAA-9NmaT2A850.png

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电路设计
    +关注

    关注

    6655

    文章

    2417

    浏览量

    202659
  • 滤波电路
    +关注

    关注

    46

    文章

    626

    浏览量

    69547
  • RLC
    RLC
    +关注

    关注

    1

    文章

    116

    浏览量

    38842
  • RC滤波电路
    +关注

    关注

    1

    文章

    23

    浏览量

    5001
收藏 人收藏

    评论

    相关推荐

    读懂RLC滤波电路设计全过程

    电源电路设计中常见RC/磁珠电容滤波,两种滤波电路滤波效果有什么差异呢?本文将对RC滤波
    的头像 发表于 06-26 10:52 2306次阅读
    <b class='flag-5'>一</b><b class='flag-5'>文</b><b class='flag-5'>读懂</b><b class='flag-5'>RLC</b><b class='flag-5'>无</b><b class='flag-5'>源</b><b class='flag-5'>滤波</b><b class='flag-5'>电路设计</b><b class='flag-5'>全过程</b>

    技术干货读懂电源技术之RLC电路分析

    大号,X Ç和- [R与电抗,X Ť任何RLC串联电路被定义为:X Ť = X L – X C 或 X T = X C – X L 中较大的个。因此,电路的总阻抗被认为是驱动电流通
    发表于 03-12 09:40

    热转印电路板制作全过程

    热转印电路板制作全过程
    发表于 06-24 00:46

    PCB 制作全过程

    `PCB 制作全过程。`
    发表于 08-05 22:43

    音箱制作全过程

    音箱制作全过程
    发表于 08-16 17:00

    有人分享制作蓝牙耳机的全过程吗?

    我想自己制作个蓝牙耳机,但是技术不够,希望有人分享下蓝牙耳机的制作全过程,可以是模块应用,最好是从底层开始制作的,包括软件的编写代码。{:23:}
    发表于 06-02 18:42

    (建议收藏)读懂RC滤波设计全过程

    真实有用信号, 而无RC滤波器当然是大部分滤波器中首选的廉价设计,并且能较简单数字化为软件滤波器设计,所以软件与硬件滤波在于
    发表于 09-10 15:51

    滤波器的相关资料推荐

    滤波电路的作用就是从众多的信号中挑选出我们想要的信号。根据电路工作是否需要电源分为滤波
    发表于 01-03 08:21

    CPU制造全过程

    CPU制造全过程第1页:由沙到晶圆,CPU诞生全过程     沙中含有25%的硅,是地壳中第二多元素,在经过氧化之后就成为了二氧化硅,在沙,尤其是石英中二氧
    发表于 09-22 08:08 77次下载

    组装电脑全过程视频教程

    组装电脑全过程视频教程 教你认识电脑主机各种配件及组装接线方法
    发表于 09-14 11:05 467次下载

    RLC网络与阻抗变换

    RLC网络与阻抗变换资料。
    发表于 06-29 13:56 0次下载

    手工制作pcb全过程

    手工制作pcb全过程介绍。
    发表于 06-19 10:18 0次下载

    电磁炉的维修全过程分享

    电磁炉的维修全过程分享
    发表于 01-10 15:16 78次下载

    滤波电路(上),滤波

    滤波电路的作用就是从众多的信号中挑选出我们想要的信号。根据电路工作是否需要电源分为滤波
    发表于 01-11 14:24 46次下载
    <b class='flag-5'>滤波</b><b class='flag-5'>电路</b>(上),<b class='flag-5'>无</b><b class='flag-5'>源</b><b class='flag-5'>滤波</b>器

    干货 | 超实用总结,通吃所有整流滤波电路

    干货 | 超实用总结,通吃所有整流滤波电路
    的头像 发表于 03-23 21:19 1154次阅读
    <b class='flag-5'>干货</b> | 超实用总结,<b class='flag-5'>一</b><b class='flag-5'>文</b>通吃所有整流<b class='flag-5'>滤波</b><b class='flag-5'>电路</b>