0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

微流控技术助力细胞迁移的研究与应用

微流控 来源:微流控 作者:微流控 2022-10-26 09:20 次阅读

细胞的趋化性迁移对于多种生物活动及临床具有重要意义,其在免疫反应、癌症转移和组织再生等众多生理病理活动中起着关键作用。

相较于传统的细胞趋化迁移检测技术,微流控芯片能在微尺度下精确控制细胞微环境和实时观测细胞迁移的动态过程,逐渐成为开展定量细胞迁移研究的有力工具,同时还在揭示细胞迁移机制及其相关疾病诊疗方面展现了丰富的应用场景。

微流控细胞迁移技术最近研究进展如何?应用方向有哪些?前景怎样?近日,中国科学院深圳先进技术研究院副研究员、博士生导师巫建东博士,围绕“基于微流控的细胞趋化迁移研究”进行报告分享,介绍了他在该领域的最新研究进展。

从中国科学技术大学本科毕业后,他进入中国科学院合肥物质科学研究院并获得硕士学位。2016年,他在加拿大曼尼托巴大学获得生物系统工程博士学位,随后在该校理学院从事博士后研究工作。2020年,他回国并加入中国科学院深圳先进技术研究院。

目前,巫建东是中国科学院深圳先进技术研究院副研究员、博士生导师,研究领域涵盖微流控技术、细胞迁移、器官芯片、体外诊断、智能图像分析、生物传感与检测系统以及免疫系统与肿瘤微环境等,他的主要研究方向为开发基于微流控芯片的细胞迁移检测技术和系统,以及探索该技术在机制研究、疾病诊断、药物筛选等方面的应用。

迄今为止,巫建东已在Lab on a Chip、npj Digital Medicine、ACS Sensors、Biosensors and Bioelectronics、Plos One等国际期刊发表SCI论文30余篇,申请4项PCT国际专利。除此之外,他还入选深圳市海外高层次人才,曾主持国家自然科学基金、广东省基金委粤深联合基金、深圳市科创委基础研究基金等多个科研项目。

微流控技术助力细胞迁移的研究与应用

在报告分享中,巫建东首先介绍了细胞迁移和微流控。“所谓细胞迁移,是指细胞在接收到迁移信号或感受到某些物质的梯度后而产生的移动。”他说道,“细胞迁移为正常细胞的基本功能之一,是机体正常生长发育的生理过程,也是活细胞普遍存在的一种运动形式。在免疫反应、癌症转移、神经发生、血管生成、伤口愈合等过程中都涉及细胞迁移。”

其中,有些细胞迁移是有益的,比如免疫细胞迁移至感染部位以抵抗病原入侵。另外,有些细胞迁移则是有害的,比如癌细胞的转移。“细胞的状态和功能与疾病的产生和发展密切相关,传统的标志物主要是基于细胞的数量、形态等参数,相较之下,细胞的迁移功能是一种潜在的疾病诊断新型标志物。”巫建东介绍说。

4591bfd2-54cb-11ed-a3b6-dac502259ad0.png

▲图|细胞迁移可作为潜在的疾病诊断新型标志物(来源:PNAS

调控细胞迁移的外界环境因素有多种,比如电场、磁场、化学场以及机械力等。“传统的细胞迁移检测方法难以形成稳定的浓度梯度,业界亟待需要一种全新方法来形成稳定浓度梯度来检测细胞迁移,而微流控技术则可以很好地满足这一需求。”巫建东指出。

所谓微流控,即微尺度的流体操控技术,微流控技术借助独特的流体现象能够实现一系列常规方法难以完成的微操作,在生物医学研究中具有较大发展潜力和广阔应用前景。而微流控装置则通常被称为微流控芯片,其具有微型化、集成化等优势。

关于使用微流控芯片进行细胞趋化迁移的相关研究,巫建东介绍道,比如借助微流控芯片可以用来探索细胞感应时空变化信号的机制。“一般认为,细胞感受时空变化浓度梯度变化的方式有两种,即时间浓度和空间浓度。”他说道,“比如细菌在浓度梯度中随机游走,当感受到浓度发生改变之后会向高浓度区域进行有偏向的随机游走,细菌可以感受到不同时间的浓度变化来进行诱导定向迁移;再比如,一些细胞感受到空间位置(前段和后端)的浓度差,空间的浓度差可以诱导细胞向高浓度区域进行定向迁移。微流控能有效解耦时间和空间浓度变化的信号,从而更好的揭示细胞迁移感应时空信号的机制。”

只需一滴血即可快速检测免疫细胞迁移

巫建东展示了他及其合作者在微流控细胞迁移领域所取得的一些研究成果。“我们开发了可以用一滴血快速进行免疫细胞迁移检测的微流控芯片。传统的方法是先将免疫细胞在片外进行分离,然后把纯化的免疫细胞随机分布在通道中,需要借助流体泵注入溶液生成梯度,这种方法用来分析细胞迁移轨迹较为复杂。”他补充说。

据介绍,他们设计的新型微流控芯片可使免疫细胞的分离和趋化在同一芯片中完成,融合磁珠标记和重力压力差的方法,在不借助外部流体控制设备的条件下可以形成非常稳定的浓度梯度。“此外,我们还开发了细胞预排列结构,如此一来,细胞迁移的‘起跑线’便框定在了同一区域,进而,可以对细胞迁移距离进行快速分析。”他说。

相较于传统方法,这项技术将整个试验的时间从原来的3小时缩短到25分钟;所需血量从10mL减少到10µL,而且操作简单,无需流体泵,只需液枪即可完成整个流程。“基于该方法分离出的中性粒细胞纯度可达99%以上,而且在引入趋化物后细胞会迅速向高浓度区域进行定向迁移,证明该方法是非常有效的。”巫建东表示。

45e3dc72-54cb-11ed-a3b6-dac502259ad0.png

▲图|一滴血快速检测免疫细胞迁移技术

此外,他们还开发了一种高通量微流控芯片,深入研究了乳腺癌细胞的迁移机制。“我们对微流控芯片进行了一些改进,通过对细胞预排列结构的尺寸进行优化调整以适合癌细胞的迁移,借助压力差的方式来驱动流体,同时用油滴连通两个入口来实现压力平衡,从而保证了浓度梯度在空间和时间上的稳定性。”他介绍道,“试验结果显示,趋化物能够有效诱导乳腺癌细胞的趋化性,且趋化物的空间浓度梯度是诱导乳腺癌细胞定向迁移的关键。他们还展示了开发的这种高通量微流控芯片在癌细胞迁移靶向药物评估方面的应用。”

460ee034-54cb-11ed-a3b6-dac502259ad0.png

▲图|高通量微流控芯片的设计与操作流程(来源:Lab on a Chip)

微流控细胞迁移实验往往需要借助传统的活细胞工作站,其体积庞大、价格昂贵、操作复杂,无法满足一些便携式应用场景的需求,巫建东课题组研发了一系列新型便携式细胞迁移检测成像系统。

“我们开发了一种基于USB显微镜的微流控细胞迁移成像系统和配套的图像处理软件,目前这套设备已经取得了美国专利。此外,还开发了一种基于手机摄像头的微流控细胞迁移成像系统。”巫建东介绍道,“为了进一步提升成像质量,我们将光学显微成像模块和温湿度环境控制模块进行有机结合,开发出一种集成式的微流控细胞迁移成像系统,其细胞迁移成像效果与传统活细胞工作站成像效果相当。”

46210fde-54cb-11ed-a3b6-dac502259ad0.png

▲图|基于手机的微流控细胞迁移成像系统(来源:Biosensors and Bioelectronics)

应用层面,巫建东以中性粒细胞和T淋巴细胞为例,展示免疫细胞迁移在慢阻肺研究和诊断方面的研究进展。对于慢阻肺,传统的诊断方法是通过肺功能评估来分析病情,其灵敏度和特异性较低。“在病理学上,呼吸道在外界刺激下会分泌一些细胞因子,细胞因子会吸引血液中的免疫细胞聚集,进而引发呼吸道炎症、呼吸困难等症状。”巫建东说道。

“我们提取慢阻肺患者的血样和痰样,用微流控芯片检测血样中的中性粒细胞在痰样上清液浓度梯度的迁移,试验结果显示,细胞迁移指标和传统肺功能指标负相关,这表明,痰样诱导中性粒细胞的迁移可以作为潜在慢阻肺检测标志物。”他指出,“我们还采用微流控芯片测试痰样对T淋巴细胞迁移的影响,发现结果与中性粒细胞恰恰相反,痰样上清液对T淋巴细胞迁移起到抑制效果。”

除此之外,巫建东表示,“微流控细胞迁移未来在治疗方面也拥有丰富的应用场景,比如针对当下比较热门的肿瘤免疫细胞疗法,CAR-T细胞疗法,改造后的T细胞迁移到肿瘤部位的效率还有待进一步提高,基于我们微流控细胞迁移技术的研究,可以筛选和分离出迁移比较好的T细胞,然后将其输回患者体内,从而实现更好的治疗效果。”

深度学习加速细胞迁移研究进程

最后,巫建东对微流控细胞迁移研究领域进行了总结与展望。“微流控芯片是定量研究细胞迁移的重要工具,能在机制研究、疾病诊疗、药物筛选等方面发挥重要作用。”他表示,“但是,现阶段缺乏标准化芯片和方法是制约微流控细胞迁移技术广泛应用的限制因素,对此,研发简单易用、高通量的微流控芯片和检测系统是解决这一挑战的有效方法。”

除此之外,“基于微流控的细胞迁移研究揭示了中性粒细胞和T淋巴细胞在慢阻肺病中截然相反的两种不同反应,相信后续我们结合深入的分子机制研究,将为慢阻肺病的发病机制研究、精准诊断和药物开发提供有力支撑。”巫建东表示。

他还介绍了微流控细胞迁移研究当前面临的一些痛点。“对于细胞迁移研究,传统的方法是人工手动追踪的方式对细胞迁移轨迹进行记录和量化分析,费时费力,存在人为误差,而深度学习技术有望成为解决这一难题的有力工具。但也存在一些挑战,如何克服细胞变形、消失、分裂、碰撞等挑战,准确的分割和追踪细胞是细胞迁移数据分析中的难点。”巫建东总结道。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 迁移
    +关注

    关注

    0

    文章

    33

    浏览量

    7941
  • 微流控
    +关注

    关注

    16

    文章

    530

    浏览量

    18909

原文标题:基于微流控芯片实现一滴血快速检测免疫细胞迁移,助力精准诊断和药物开发

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    技术在病原微生物检测中的研究进展

    快速、准确地检测病原微生物对于疫情防控和保障人民生命健康具有重大意义。近几年,研究者们通过合理地设计控芯片,将Elveflow
    的头像 发表于 12-25 16:18 200次阅读

    功率放大器应用分享:利用技术促进干细胞心肌组织成熟

    技术是一种通过微小的通道和微型装置对流体进行精确操控和分析的技术。它是现代医学技术发展过程中的一种重要的生物医学工程
    的头像 发表于 12-24 13:59 129次阅读
    功率放大器应用分享:利用<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>技术</b>促进干<b class='flag-5'>细胞</b>心肌组织成熟

    技术的生物学应用

    技术为在推动生物学众多领域的强大工具做出了巨大贡献。随着用于通道中流体的注射、混合、泵送和存储的新器件和工艺的发展,近年来
    的头像 发表于 12-01 21:50 156次阅读

    控多层键合技术

    一、超声键合辅助的多层键合技术 基于导能阵列的超声键合多层键合技术: 在超声键合控芯片多层键合研究
    的头像 发表于 11-19 13:58 181次阅读
    <b class='flag-5'>微</b><b class='flag-5'>流</b>控多层键合<b class='flag-5'>技术</b>

    安泰功率放大器应用领域:技术和分子结合的体外诊断研究

    技术是一种通过微小的通道和微型装置对流体进行精确操控和分析的技术,它是现代医学技术发展过程中的一种重要的生物医学工程
    的头像 发表于 11-19 11:58 148次阅读
    安泰功率放大器应用领域:<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>技术</b>和分子结合的体外诊断<b class='flag-5'>研究</b>

    Aigtek高压放大器在介电泳的细胞分离技术中的应用

    医学的进步总是伴随着医学检验诊断技术的不断提高和革新。在生物医学相关的研究中,人们的研究集中在特定细胞类型或者附着于微粒上的分析物中,这些微粒存在于样品中,而这些样品中多数情况下含有各
    的头像 发表于 11-15 11:15 180次阅读
    Aigtek高压放大器在介电泳的<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>细胞</b>分离<b class='flag-5'>技术</b>中的应用

    ATG-2000系列功率信号源在介电电泳细胞分选测试中的应用

    在所有基于电场的控预处理技术中,介电电泳(Dielectrophoresis,DEP)技术具有生物相容性、无需标记、可控性及易集成等优势,在生物样本分离检测中具有巨大的应用潜力,已
    的头像 发表于 10-12 16:27 185次阅读
    ATG-2000系列功率信号源在介电电泳<b class='flag-5'>细胞</b>分选测试中的应用

    ATA-7020高压放大器在控3D细胞球培养中的应用

    过程中,细胞原始生物学特性的保存却被忽略了。近期,中国科学院纳米科学卓越中心Linglin教授团队提出了一个集成的控设备来完成整个过程,包括载有细胞
    的头像 发表于 10-09 11:54 250次阅读
    ATA-7020高压放大器在<b class='flag-5'>微</b><b class='flag-5'>流</b>控3D<b class='flag-5'>细胞</b><b class='flag-5'>微</b>球培养中的应用

    控芯片3大制作技术

    技术的核心思想,是以最小的消耗来获得最大的产出,仅需极少的样本采集便可获得所需的各项信息。具体来讲,控追求的是最小的反应体系(皮升
    的头像 发表于 08-29 14:44 472次阅读

    宽带功率放大器基于技术细胞分选的应用

    实验名称:基于技术细胞分选和单细胞分析用于肿瘤药物敏感性研究
    的头像 发表于 08-06 14:37 1915次阅读
    宽带功率放大器基于<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>技术</b>的<b class='flag-5'>细胞</b>分选的应用

    基于磁珠的液滴控平台,用于细胞外囊泡的高效分离

    细胞外囊泡(EVs)作为各种疾病的生物标志物正迅速受到研究人员的青睐,其可以充当来源细胞的宝贵信息载体。
    的头像 发表于 03-12 10:52 1001次阅读
    基于磁珠的液滴<b class='flag-5'>微</b><b class='flag-5'>流</b>控平台,用于<b class='flag-5'>细胞</b>外囊泡的高效分离

    安泰ATA-7050高压放大器在细胞分选中的应用

    细胞分选是一种用于分离和鉴定生物样本中特定类型细胞技术,其原理基于将生物细胞通过
    的头像 发表于 03-01 16:56 423次阅读
    安泰ATA-7050高压放大器在<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>细胞</b>分选中的应用

    基于双极性电极的控芯片,用于生物颗粒和细胞分选

    在生物化学应用中,对细胞或颗粒进行无鞘聚焦和分选是一个重要的预处理步骤。以往的分选方法大多依赖于使用鞘流来实现高效的细胞聚焦。
    的头像 发表于 02-25 10:09 1352次阅读
    基于双极性电极的<b class='flag-5'>微</b><b class='flag-5'>流</b>控芯片,用于生物颗粒和<b class='flag-5'>细胞</b>分选

    优可测推动技术革新,精准助力生物医学等行业的发展

    控芯片凭借着集成小型化与自动化、污染少、样本量少、检测试剂消耗少、高通量等特点,在生物医学、化学、材料科学等领域具有广泛的应用前景,其中,控芯片在生物医疗中应用居多。随着科学
    的头像 发表于 01-19 08:32 629次阅读
    优可测推动<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>技术</b>革新,精准<b class='flag-5'>助力</b>生物医学等行业的发展

    如何利用磁性控系统实现免疫细胞分泌行为的定量检测呢?

    免疫细胞分泌功能(Immune cell secretion)的调控是当前生物医学研究的关键所在。
    的头像 发表于 01-08 11:00 764次阅读
    如何利用磁性<b class='flag-5'>微</b><b class='flag-5'>流</b>控系统实现免疫<b class='flag-5'>细胞</b>分泌行为的定量检测呢?