0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

USB通信协议的基本概念及理解

硬件攻城狮 来源:一口linux 作者:一口linux 2022-10-31 15:25 次阅读

0. 基本概念

一个【传输】(控制、批量、中断、等时):由多个【事务】组成;

一个【事务】(IN、OUT、SETUP):由一多个【Packet】组成。

USB数据在【主机软件】与【USB设备特定的端点】间被传输。【主机软件】与【USB设备特定的端点】间的关联叫做【pipes】。一个USB设备可以有多个管道(pipes)。

1. 包(Packet)

包(Packet)是USB系统中信息传输的基本单元,所有数据都是经过打包后在总线上传输的。数据在 USB总线上的传输以包为单位,包只能在帧内传输。高速USB 总线的帧周期为125us,全速以及低速 USB 总线的帧周期为 1ms。帧的起始由一个特定的包(SOF 包)表示,帧尾为 EOF。EOF不是一个包,而是一种电平状态,EOF期间不允许有数据传输。

注意:虽然高速USB总线和全速/低速USB总线的帧周期不一样,但是SOF包中帧编号的增加速度是一样的,因为在高速USB系统中,SOF包中帧编号实际上取得是计数器的高11位,最低三位作为微帧编号没有使用,因此其帧编号的增加周期也为 1mS

USB总线上的情形是怎样的?

6ff7e5ae-58d5-11ed-a3b6-dac502259ad0.png

包是USB总线上数据传输的最小单位,不能被打断或干扰,否则会引发错误。若干个数据包组成一次事务传输,一次事务传输也不能打断,属于一次事务传输的几个包必须连续,不能跨帧完成。一次传输由一次到多次事务传输构成,可以跨帧完成。

USB包由五部分组成,即同步字段(SYNC)、包标识符字段(PID)、数据字段、循环冗余校验字段(CRC)和包结尾字段(EOP),包的基本格式如下图:

700d7356-58d5-11ed-a3b6-dac502259ad0.png

1.1 PID类型(即包类型)

704497f0-58d5-11ed-a3b6-dac502259ad0.png

706fa95e-58d5-11ed-a3b6-dac502259ad0.png

1.2 Token Packets

70768008-58d5-11ed-a3b6-dac502259ad0.png

此格式适用于IN、OUT、SETUP、PING。

PID 数据传输方向

IN Device->Host

OUT Host->Device

SETUP Host->Device

PING Device->Host

1.3 Start-of-Frame(SOF) Packets

SOF包由Host发送给Device。

对于full-speed总线,每隔1.00 ms ±0.0005 ms发送一次;

对于high-speed总线,每隔125 μs ±0.0625 μs发送一次;

SOF包构成如下图所示

7088815e-58d5-11ed-a3b6-dac502259ad0.png

708df9cc-58d5-11ed-a3b6-dac502259ad0.png

1.4 Data Packets

70a258fe-58d5-11ed-a3b6-dac502259ad0.png

有四种类类型的数据包:DATA0, DATA1, DATA2,and MDATA,且由PID来区分。DATA0和DATA1被定义为支持数据切换同步(data toggle synchronization)。

1.5 Handshake Packets

70b514a8-58d5-11ed-a3b6-dac502259ad0.png

ACK: 对于IN事务,它将由host发出;对于OUT、SETUP和PING事务,它将由device发出。

NAK: 在数据阶段,对于IN事务,它将由device发出;在握手阶段,对于OUT和PING事务,它也将由device发出;host从不发送NAK包。

2. 事务(Transaction)

在USB上数据信息的一次接收或发送的处理过程称为事务处理(Transaction)即:The delivery of service to an endpoint。一个事务由一系统packet组成,具体由哪些packet组成,它取决于具体的事务。可能由如下包组成:

一个token packet

可选的data pcket

可选的handshake packet

可选的special packet

2.1 输入(IN)事务处理

输入事务处理:表示USB主机从总线上的某个USB设备接收一个数据包的过程。

【正常】的输入事务处理

70c55fd4-58d5-11ed-a3b6-dac502259ad0.png

【设备忙】时的输入事务处理

70d3ca42-58d5-11ed-a3b6-dac502259ad0.png

【设备出错】时的输入事务处理

70daea8e-58d5-11ed-a3b6-dac502259ad0.png

2.2. 输出(OUT)事务处理

输出事务处理:表示USB主机把一个数据包输出到总线上的某个USB设备接收的过程。

【正常】的输出事务处理

70e2a3b4-58d5-11ed-a3b6-dac502259ad0.png

【设备忙时】的输出事务处理

70f7d05e-58d5-11ed-a3b6-dac502259ad0.png

【设备出错】的输出事务处理

710478cc-58d5-11ed-a3b6-dac502259ad0.png

2.3 设置(SETUP)事务处理

【正常】的设置事务处理

71087666-58d5-11ed-a3b6-dac502259ad0.png

【设备忙时】的设置事务处理

71164a20-58d5-11ed-a3b6-dac502259ad0.png

【设备出错】的设置事务处理

711f4378-58d5-11ed-a3b6-dac502259ad0.png

3. USB传输类型

在USB的传输中,定义了4种传输类型:

控制传输 (Control Transfer)

中断传输 (Interrupt Transfer)

批量传输 (Bulk Transfer)

同步传输 (Isochronous)

3.1 控制传输 (Control Transfer)

控制传输由2~3个阶段组成:

建立阶段(Setup)

数据阶段(无数据控制没有此阶段)(DATA)

状态阶段(Status)

每个阶段都由一次或多次(数据阶段)事务传输组成(Transaction)。

控制数据由USB系统软件用于配置设备(在枚举时),其它的驱动软件可以选择使用control transfer实现具体的功能,数据传输是不可丢失的。

3.1.1 建立阶段

主机从USB设备获取配置信息,并设置设备的配置值。建立阶段的数据交换包含了SETUP令牌封包、紧随其后的DATA0数据封包以及ACK握手封包。它的作用是执行一个设置(概念含糊)的数据交换,并定义此控制传输的内容(即:在Data Stage中IN或OUT的data包个数,及发送方向,在Setup Stage已经被设定)。

71317962-58d5-11ed-a3b6-dac502259ad0.png

3.1.2 数据阶段

根据数据阶段的数据传输的方向,控制传输又可分为3种类型:

控制读取(读取USB描述符)

控制写入(配置USB设备)

无数据控制

数据传输阶段:用来传输主机与设备之间的数据。

控制读取

是将数据从设备读到主机上,读取的数据USB设备描述符。该过程如下图的【Control Read】所示。对每一个数据信息包而言,首先,主机会发送一个IN令牌信息包,表示要读数据进来。然后,设备将数据通过DATA1/DATA0数据信息包回传给主机。最后,主机将以下列的方式加以响应:当数据已经正确接收时,主机送出ACK令牌信息包;当主机正在忙碌时,发出NAK握手信息包;当发生了错误时,主机发出STALL握手信息包。

控制写入

是将数据从主机传到设备上,所传的数据即为对USB设备的配置信息,该过程如下的图【Control Wirte】所示。对每一个数据信息包而言,主机将会送出一个OUT令牌信息包,表示数据要送出去。紧接着,主机将数据通过DATA1/DATA0数据信息包传递至设备。最后,设备将以下列方式加以响应:当数据已经正确接收时,设备送出ACK令牌信息包;当设备正在忙碌时,设备发出NAK握手信息包;当发生了错误时,设备发出STALL握手信息包。

716530e0-58d5-11ed-a3b6-dac502259ad0.png

3.1.3 状态阶段

状态阶段:用来表示整个传输的过程已完全结束。

状态阶段传输的方向必须与数据阶段的方向相反,即原来是IN令牌封包,这个阶段应为OUT令牌封包;反之,原来是OUT令牌封包,这个阶段应为IN令牌封包。

对于【控制读取】而言,主机会送出OUT令牌封包,其后再跟着0长度的DATA1封包。而此时,设备也会做出相对应的动作,送ACK握手封包、NAK握手封包或STALL握手封包。

相对地对于【控制写入】传输,主机会送出IN令牌封包,然后设备送出表示完成状态阶段的0长度的DATA1封包,主机再做出相对应的动作:送ACK握手封包、NAK握手封包或STALL握手封包。

3.2 批量传输 (Bulk Transfer)

用于传输大量数据,要求传输不能出错,但对时间没有要求,适用于打印机、存储设备等。

批量传输是可靠的传输,需要握手包来表明传输的结果。若数据量比较大,将采用多次批量事务传输来完成全部数据的传输,传输过程中数据包的PID 按照 DATA0-DATA1-DATA0-…的方式翻转,以保证发送端和接收端的同步。

USB 允许连续 3次以下的传输错误,会重试该传输,若成功则将错误次数计数器清零,否则累加该计数器。超过三次后,HOST 认为该端点功能错误(STALL),放弃该端点的传输任务。

一次批量传输(Transfer)由 1 次到多次批量事务传输(Transaction)组成。

翻转同步:发送端按照 DATA0-DATA1-DATA0-…的顺序发送数据包,只有成功的事务传输才会导致 PID 翻转,也就是说发送端只有在接收到 ACK 后才会翻转 PID,发送下一个数据包,否则会重试本次事务传输。同样,若在接收端发现接收到到的数据包不是按照此顺序翻转的,比如连续收到两个 DATA0,那么接收端认为第二个 DATA0 是前一个 DATA0 的重传。

它通过在硬件级执行“错误检测”和“重传”来确保host与device之间“准确无误”地传输数据,即可靠传输。它由三种包组成(即IN事务或OUT事务):

token

data

handshake

71771c9c-58d5-11ed-a3b6-dac502259ad0.png

For IN Token (即:IN Transaction)

ACK: 表示host正确无误地接收到数据

NAK: 指示设备暂时不能返回或接收数据 (如:设备忙)

STALL:指示设备永远停止,需要host软件的干预 (如:设备出错)

For OUT Token (即:OUT Transaction)

如果接收到的数据包有误,如:CRC错误,Device不发送任何handshake包

ACK: Device已经正确无误地接收到数据包,且通知Host可以按顺序发送下一个数据包

NAK: Device 已经正确无误地接收到数据包,且通知Host重传数据,由于Device临时状况(如buffer满)

STALL: 指示Device endpoint已经停止,且通知Host不再重传

Bulk读写序列

71a95cb6-58d5-11ed-a3b6-dac502259ad0.png

即由一系统IN事务或OUT事务组成。

3.3 中断传输(Interrupt Transfer)

中断传输由IN或OUT事务组成。

中断传输在流程上除不支持PING 之外,其他的跟批量传输是一样的。他们之间的区别也仅在于事务传输发生的端点不一样、支持的最大包长度不一样、优先级不一样等这样一些对用户来说透明的东西。

主机在排定中断传输任务时,会根据对应中断端点描述符中指定的查询间隔发起中断传输。中断传输有较高的优先级,仅次于同步传输。

同样中断传输也采用PID翻转的机制来保证收发端数据同步。下图为中断传输的流程图。

中断传输方式总是用于对设备的查询,以确定是否有数据需要传输。因此中断传输的方向总是从USB设备到主机。

71afa706-58d5-11ed-a3b6-dac502259ad0.png

DATA0或DATA1中的包含的是中断信息,而不是中断数据。

3.4 同步传输(Isochronous Transfer)

它由两种包组成:

token

data

同步传输不支持“handshake”和“重传能力”,所以它是不可靠传输。

同步传输是不可靠的传输,所以它没有握手包,也不支持PID翻转。主机在排定事务传输时,同步传输有最高的优先级。

同步传输适用于必须以固定速率抵达或在指定时刻抵达,可以容忍偶尔错误的数据上。实时传输一般用于麦 克风、喇叭、UVC Camera等设备。实时传输只需令牌与数据两个信息包阶段,没有握手包,故数据传错时不会重传。

71b9f7d8-58d5-11ed-a3b6-dac502259ad0.png

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • usb
    usb
    +关注

    关注

    60

    文章

    7891

    浏览量

    263972
  • 总线
    +关注

    关注

    10

    文章

    2866

    浏览量

    87980

原文标题:深入理解USB通信协议

文章出处:【微信号:mcu168,微信公众号:硬件攻城狮】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    串口通信协议解析 串口通信应用实例

    串口通信协议解析 串口通信协议是指规定了数据包的内容,内容包含了起始位、主体数据、校验位及停止位,双方需要约定一致的数据包格式才能正常收发数据的有关规范。以下是串口通信协议的介绍: 基本概念
    的头像 发表于 11-21 17:03 231次阅读

    PLC控制系统的通信协议解析

    基本概念 通信协议是一组规则,定义了数据如何在不同的设备之间传输。在PLC控制系统中,这些协议包括物理层、数据链路层、网络层、传输层和应用层等多个层次。 常见的PLC通信协议 Mod
    的头像 发表于 11-08 09:46 257次阅读

    谐波的概念及应用

    本文简单介绍了谐波的概念及应用。
    的头像 发表于 10-18 14:14 264次阅读
    谐波的<b class='flag-5'>概念及</b>应用

    PROFINET通信协议是什么

    PROFINET通信协议是一种专为工业自动化领域设计的基于以太网的实时通信协议。以下是对PROFINET通信协议的详细解析,包括其定义、特点、体系结构、工作原理、通信方式、应用领域以及
    的头像 发表于 09-25 18:13 1052次阅读

    SPI通信协议基本概念和工作模式

    接口设计,在嵌入式系统、微控制器与各种外围设备之间的通信中占据重要地位。以下是对SPI通信协议的详细解析,内容涵盖其基本概念通信原理、信号线定义、
    的头像 发表于 09-09 17:04 906次阅读

    简单认识UART通信协议

    UART(Universal Asynchronous Receiver/Transmitter,通用异步收发传输器)通信协议是一种常见的串行通信协议,广泛应用于计算机、嵌入式系统、传感器、无线通信
    的头像 发表于 07-25 18:07 1334次阅读

    串口通信基本概念

    串口通信(Serial Communications)的基本概念可以归纳为以下几个方面:
    的头像 发表于 06-12 09:28 542次阅读
    串口<b class='flag-5'>通信</b>的<b class='flag-5'>基本概念</b>

    高速串行通信协议都有哪些

    高速串行通信协议是现代电子设备中用于数据传输的关键技术。这些协议在各种应用中发挥着重要作用,如计算机、移动设备、网络设备等。以下是一些常见的高速串行通信协议,以及它们的详细描述。 USB
    的头像 发表于 05-31 16:11 988次阅读

    RS485通信协议的特性和应用范围

    随着工业自动化和物联网技术的飞速发展,数据通信协议的重要性日益凸显。RS485通信协议作为一种广泛应用于工业自动化领域的串行通信协议,其稳定性和可靠性得到了广泛的认可。本文将对RS485通信协
    的头像 发表于 05-23 16:27 1600次阅读

    UART串口通信协议是什么?

    UART (Universal Asynchronous Receiver/Transmitter) 是一种通信接口协议,用于实现串口通信。它是一种简单的、可靠的、广泛应用的串口通信协议
    的头像 发表于 03-19 17:26 1255次阅读

    串行通信协议的带宽是指什么?

    在SPI和I2C等串行通信协议,两者带宽不一样,这里的带宽是指什么,传输速率还是其他什么?如果要求很高的传输速率,那么要求发送端要能很快的发送数据,要有很短的上升沿下降沿时间,高低位电平也维持很短
    发表于 02-08 18:04

    工业控制通信协议的报文帧分别是什么样的?

    那样先存储起来,不知道我对同步异步通信理解是否正确? 2、这些协议下的通信设备发送数据的格式多种多样,请问每种协议
    发表于 01-19 14:46

    有关通信协议时一些问题?

    抗干扰就加强滤波,要求输入信号隔离就加隔离芯片或其他方式,总之这一段电路不应该太夏杂吧,远不如芯片内部的信号处理电路?最后请推荐几本有关串行通信协议方面硬件方面的书,还有一个问题,这些通信协议的设计工作应该在哪些课程或哪些书上?
    发表于 01-14 00:58

    从Profinet到CCLink:工业通信协议的转换实践

    本文将探讨从Profinet协议转换到CCLink协议的过程,包括转换的必要性、网关的使用、转换步骤以及注意事项。通过了解这些内容,能够更好地理解工业通信协议转换的实际操作,并为设备
    的头像 发表于 12-15 14:31 827次阅读
    从Profinet到CCLink:工业<b class='flag-5'>通信协议</b>的转换实践

    从Profinet到CCLink:工业通信协议的转换实践

    本文将探讨从Profinet协议转换到CCLink协议的过程,包括转换的必要性、网关的使用、转换步骤以及注意事项。通过了解这些内容,能够更好地理解工业通信协议转换的实际操作,并为设备
    发表于 12-15 14:26