0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

使用HPEC促进深度学习技术

星星科技指导员 来源:嵌入式计算设计 作者:DR. MOHAMED BERGACH 2022-11-02 09:48 次阅读

期待已久的机器学习时代终于到来了。深度学习技术对作战人员的潜在好处既巨大又深远。随着防御系统趋向于更大的应用程序自主性,深度学习技术过于复杂,无法用更传统的处理技术实现,现在可以帮助显着推动流信号或图像数据平台处理的进步。事实证明,这些技术可用于模式识别任务,例如自然语言处理和图像特征检测,从而基于庞大的数据集产生高度可靠的自主决策。

加速深度学习在防御系统中应用的是可用的技术——最新的超大型 FPGA 的数字处理能力、高能效图形处理器单元 (GPU) 以及与灵活的多核处理器相关的高级 SIMD [单指令多数据] 处理单元。通过超越曾经使深度学习架构对任何类型的实时应用都不切实际的处理限制,如今,新的高性能嵌入式计算 (HPEC) 平台提供的进步,即使在尺寸、重量和功耗 (SWaP) 受限的系统中,深度学习算法也可以轻松满足。进一步定义如何应用深度学习算法来解决应用程序的特定问题是一项持续的挑战。因此,技术供应商必须能够定制和完善基于HPEC的平台,以便它们能够轻松适应深度学习应用的需求。

了解深度学习如何工作的基础知识有助于说明它对战士的积极力量。应用程序可以通过获取各种传感器(图像、声音、GPS 位置、雷达等)收集的任何信号(观察)来“学习”,并以抽象的方式表示它,或者作为形状、角落、图案等特征表示。这些抽象由深度神经网络(DNN,或数十层处理层)组成。每个图层根据特定类型的要素处理数据,并将结果提供给下一个图层。结果可能令人印象深刻,有时甚至比人工制作的解决方案更好,优化了人脸识别、图像配准、自然语言处理和欺诈检测等应用程序。

由于网络必须经过“训练”,因此必须应用大量计算,其中信息经过多次加权和优化,以减少出错的可能性。因此,学习阶段通常在不间断运行的数据中心中执行。每个训练结果都是一个快照。在[军事-航空航天]设置中,这些快照将部署在实际的嵌入式HPEC系统上进行测试。该过程不断重复,期望每个快照的响应都比前一个快照更好。

使用基于英特尔至强处理器 D-1540(Broadwell DE)的现成处理密集型平台,可以构建针对深度学习应用优化的模块化 HPEC 系统。这些系统充分利用其八个内核,每个内核有两个AVX2单元,以同时处理八个浮点FMA(融合乘法/累加)操作。换句话说,八个内核可以在每个时钟周期内执行 128 次浮点运算。英特尔至强融核协处理器进一步提高了这一水平。提供 72 个内核,每个内核有两个 AVX-512 单元,每个单元每个时钟处理 16 个 FMA 操作,总共 2304 个 FMA 操作。另一个优点是英特尔架构可确保与每一代后续 64 位处理器的二进制兼容性,从而有效地保护软件投资免受未来任何不兼容的影响。

此外,OpenCL 正在蓬勃发展,迅速成为异构计算的首选标准。其丰富而富有表现力的 API 管理数据流和计算对象,并有助于确保源代码在不同平台(如 GPU、CPU 和 FPGA)上的可移植性。基于 VPX 的主板和平台也增加了价值,通过背板与 PCIe Gen3 或 10 Gb 以太网链路提供高速/低延迟通信,帮助适应最广泛的应用。

在当今功能强大且功能丰富的HPEC平台的推动下,深度学习应用程序可以轻松筛选来自军方大信号和图像处理系统的大量数据流。考虑该技术对必须持续搜索感兴趣信号或目标的应用的影响。深度学习可以成为主动搜寻威胁和自主部署主动保护系统的答案。在HPEC平台的支持下,在国防系统智能自主需求的推动下,深度学习技术可能会在军方未来的作战战略中发挥重要的新作用。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8347

    浏览量

    132294
  • 深度学习
    +关注

    关注

    73

    文章

    5463

    浏览量

    120876
收藏 人收藏

    评论

    相关推荐

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 278次阅读

    激光雷达技术的基于深度学习的进步

    信息。这使得激光雷达在自动驾驶、无人机、机器人等领域具有广泛的应用前景。 二、深度学习技术的发展 深度学习是机器
    的头像 发表于 10-27 10:57 254次阅读

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习是AI大模型的基础
    的头像 发表于 10-23 15:25 296次阅读

    FPGA做深度学习能走多远?

    ,共同进步。 欢迎加入FPGA技术微信交流群14群! 交流问题(一) Q:FPGA做深度学习能走多远?现在用FPGA做深度学习加速成为一个热
    发表于 09-27 20:53

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个领域。随着深度
    的头像 发表于 07-09 15:54 644次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文将介绍深度学习与NLP的区别。 深度
    的头像 发表于 07-05 09:47 746次阅读

    基于深度学习的小目标检测

    在计算机视觉领域,目标检测一直是研究的热点和难点之一。特别是在小目标检测方面,由于小目标在图像中所占比例小、特征不明显,使得检测难度显著增加。随着深度学习技术的快速发展,尤其是卷积神经网络(CNN
    的头像 发表于 07-04 17:25 698次阅读

    深度学习与卷积神经网络的应用

    随着人工智能技术的飞速发展,深度学习和卷积神经网络(Convolutional Neural Network, CNN)作为其中的重要分支,已经在多个领域取得了显著的应用成果。从图像识别、语音识别
    的头像 发表于 07-02 18:19 740次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器
    的头像 发表于 07-01 11:40 1094次阅读

    深度学习在自动驾驶中的关键技术

    随着人工智能技术的飞速发展,自动驾驶技术作为其中的重要分支,正逐渐走向成熟。在自动驾驶系统中,深度学习技术发挥着至关重要的作用。它通过模拟人
    的头像 发表于 07-01 11:40 615次阅读

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入深度
    发表于 04-23 17:18 1222次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的语义SLAM

    为什么深度学习的效果更好?

    导读深度学习是机器学习的一个子集,已成为人工智能领域的一项变革性技术,在从计算机视觉、自然语言处理到自动驾驶汽车等广泛的应用中取得了显著的成功。深度
    的头像 发表于 03-09 08:26 573次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?

    什么是深度学习?机器学习深度学习的主要差异

    2016年AlphaGo 击败韩国围棋冠军李世石,在媒体报道中,曾多次提及“深度学习”这个概念。
    的头像 发表于 01-15 10:31 959次阅读
    什么是<b class='flag-5'>深度</b><b class='flag-5'>学习</b>?机器<b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的主要差异

    详解深度学习、神经网络与卷积神经网络的应用

    处理技术也可以通过深度学习来获得更优异的效果,比如去噪、超分辨率和跟踪算法等。为了跟上时代的步伐,必须对深度学习与神经网络
    的头像 发表于 01-11 10:51 1826次阅读
    详解<b class='flag-5'>深度</b><b class='flag-5'>学习</b>、神经网络与卷积神经网络的应用

    深度学习技术与边缘学习技术的不同之处

    如今,AI技术的广泛应用已经成为推动制造和物流领域自动化的核心驱动力。康耐视所推出的深度学习和边缘学习技术,这两种基于AI的
    的头像 发表于 11-17 10:44 534次阅读