0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于高空气稳定性的硫化物固态电解质

锂电联盟会长 来源:锂电联盟会长 作者:锂电联盟会长 2022-11-02 11:55 次阅读

目前锂电池已经广泛的应用在生活中,无论是电动汽车还是储能电站都离不开锂离子电池,然而传统的液态电池存在易燃、易爆的缺陷并且能量密度也达到了瓶颈,全固态电池不仅不存在这些安全问题,还具有超高的能量密度有着巨大的应用潜力。固体电解质是全固态电池中至关重要的一部分,硫化物固体电解质因其超高的离子电导率(可达到10-3-10-2与目前液态电解质离子电导率相当)受到了广泛的关注。然而传统的硫化物固体电解质存在空气稳定性差、合成成本较高、与锂负极界面稳定性差等问题限制了其商业化应用,因此如何解决这些问题是实现硫化物固体电解质大规模应用的重点难题。

近日,北京科技大学范丽珍教授团队在Advanced Functional Materials上发表了一篇关于高空气稳定性的硫化物固态电解质文章,该文章中通过Bi和O元素对Li3PS4硫化物固体电解质进行掺杂改性,成功合成了Li3.12P0.94Bi0.06S3.91O0.09电解质,该电解质仅需在250℃下热处理3h降低了热处理成本,并且这种电解质在室温下离子电导率高达2.8 x 10−3S cm−1较未掺杂的电解质提升了将近一个数量级,并且具有良好的空气稳定性。作者还通过第一性原理密度泛函理论(DFT)计算的方法,对硫化物电解质空气稳定性的改进机理进行了深入的研究。此外,得益于Bi的掺杂,该电解质可以在锂金属表明原位生成Li-Bi合金,提高了电解质和锂负极的界面稳定性,使得该掺杂电解质的离子电导率可以达到1.2 mA cm-2并且可以在1 mA cm-2的大电流密度下稳定循环400h以上。这种掺杂后的硫化物电解质即使应用到全固态电池中也具有较好的循环性能。

7d45d544-5a61-11ed-a3b6-dac502259ad0.png

图1.Li3+2xP1-xBixS4-1.5xO1.5x(X = 0, 0.02, 0.04, 0.06, 0.08)硫化物固体电解质的合成路径以及对其晶体结构的表征,并且通过理论计算对掺杂原子取代位置进行了探究。

作者采用高能球磨再退火的方法合成了Li3+2xP1-xBixS4-1.5xO1.5x(X = 0, 0.02, 0.04, 0.06, 0.08)硫化物固体电解质,XRD数据表明Bi和O元素成功的掺杂到Li3PS4的晶体结构中,通过相关的理论计算探究了掺杂的Bi和O原子在晶体中的取代位置,计算还表明Bi3+对P5+离子的取代可以增加Li离子在晶胞中的浓度,降低了锂离子迁移的扩散势垒。

7d58f94e-5a61-11ed-a3b6-dac502259ad0.png

图2.Li3+2xP1-xBixS4-1.5xO1.5x(X = 0, 0.02, 0.04, 0.06, 0.08)硫化物固体电解质的XPS和XRD表征。

X射线光电子能谱(XPS)显示了Li3.12P0.94Bi0.06S3.91O0.09结构中除了广泛存在的PS43−四面体相,还存在一定的Bi-S键P-O键,另外也观察到了Bi元素的特征峰,这些结果证实了Bi和O掺杂成功地掺杂到Li3PS4的结构框架中,扫描电子显微镜(SEM)图像和相应的EDS图谱显示了P、S、Bi和O元素的均匀分布。

7dac00a8-5a61-11ed-a3b6-dac502259ad0.png

图3.掺杂后Li3+2xP1-xBixS4-1.5xO1.5x硫化物固体电解质在空气稳定性方面的测试,以及对空气稳定性提升机理的探讨。

作者在50%湿度下将不同掺杂量的Li3+2xP1-xBixS4-1.5xO1.5x电解质暴露在空气中进行空气稳定性的测试,未掺杂的Li3PS4电解质暴露后会释放出大量的H2S气体,在Bi和O元素掺杂后H2S气体产生量逐渐减少,当掺杂量达到X=0.06后H2S气体产生量急剧下降,即使在暴露6h后产生的H2S气体量也较少。通过X射线衍射仪的测量,可以看出Li3.12P0.94Bi0.06S3.91O0.09电解质在空气中可以保持结构的相对稳定性,而未掺杂的Li3PS4电解质暴露在空气中后有大量的杂峰生成,表明结构产生了较大的改变。作者还通过密度泛函理论计算了Li3+2xP1-xBixS4-1.5xO1.5x电解质的水解反应能(ΔEhy),通常情况下,硫化物的水解反应是由吸附的H2O攻击PS4四面体引起的,通过计算表明PS4、BiS4和PS3O单元的ΔEhy分别为−1.21、0.87和−0.21 eV。其中BiS4单元的ΔEhy为正值,表明热力学稳定的BiS4单元可以大幅度提高掺杂电解质的空气稳定性。作者还将Li3.12P0.94Bi0.06S3.91O0.09电解质直接暴露在水中对比掺杂和未掺杂的稳定性,掺杂后的电解质即使暴露在水中还保持非常好的稳定性,本实验中制备的Li3.12P0.94Bi0.06S3.91O0.09电解液的耐水解性与目前已知最高的的性能相当。

7de6783c-5a61-11ed-a3b6-dac502259ad0.png

图4.掺杂前后硫化物固体电解质在合成成本、离子电导率、临界电流密度、锂对称性能以及全电池循环性能等方面的对比。

在该实验中合成的Li3.12P0.94Bi0.06S3.91O0.09电解质仅需在250℃下热处理3h降低了热处理成本并且离子电导率与目前大部分硫化物固体电解质相当,通过EIS测试了不同掺杂量的硫化物电解质Li3+2xP1-xBixS4-1.5xO1.5x离子电导率(x=0,0.02,0.04,0.06, 0.08),结果表明x=0.06掺杂下的室温电导率最高,可以达到2.8×10−3S cm−1,与未掺杂的Li3PS4电解质相比提升了将近一个数量级;通过组装对称的Li/Li3.12P0.94Bi0.06S3.91O0.09/Li电池,测量了其临界电流密度值,该掺杂电解质的临界电流密度可以达到1.2 mA cm−2。在Li3PS4固态电解质中掺杂Bi和O元素后,界面化学发生了调整,有效地调节了Li的电镀/剥离行为,从而提高了抑制枝晶生长的能力。掺杂后的Li3.12P0.94Bi0.06S3.91O0.09电解质可以在0.1 mA cm−2的电流密度下稳定循环2000h以上,并且即使在1 mA cm−2的电流密度下还能稳定循环400h以上。最终将掺杂后的Li3.12P0.94Bi0.06S3.91O0.09电解质应用到全固态电池中也具有较好的循环性能。

本文通过双掺杂的策略成功地合成了Li3.12P0.94Bi0.06S3.91O0.09硫化物固体电解质,并对其结构和性能进行了系统的表征。结果表明,掺杂后的离子电导率最高可达2.8×10−3S cm−1,同时还具有较高的空气稳定性。通过理论计算从本质上阐明了Bi和O共掺杂对硫化物电解质空气稳定性的提升机制。在锂对称电池中,掺杂后的Li3.12P0.94Bi0.06S3.91O0.09电解质临界电流密度可以达到1.2 mA cm−2,并且还能在1 mA cm−2的电流密度下稳定循环400h以上。最后,将掺杂的电解质应用到全固态锂金属电池中也表现出较好的循环性能。

北京科技大学范丽珍教授为论文通讯作者。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂电池
    +关注

    关注

    260

    文章

    8107

    浏览量

    170097
  • 电解质
    +关注

    关注

    6

    文章

    811

    浏览量

    20057

原文标题:AFM:一种高空气稳定性且合成成本较低的硫化物固体电解质

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    北京科技大学范丽珍教授团队In和F共掺杂LPSCl制备固体电解质

    对其广泛应用造成严重限制。在这种情况下,采用固体电解质的全固态锂电池为提高安全性提供了巨大的潜力。在不同的粒子中,硫化物的离子导电性是非常好的。此外,硫化物SES还具有机械健壮性等优点
    的头像 发表于 12-04 10:05 189次阅读
    北京科技大学范丽珍教授团队In和F共掺杂LPSCl制备固体<b class='flag-5'>电解质</b>

    华为公布硫化物固态电池新专利,固态电池技术加速发展

    华为于11月5日宣布了一项关于硫化物固态电池的创新专利,专利名称为《掺杂硫化物材料及其制备方法、锂离子电池》。据专利摘要介绍,该掺杂硫化物
    的头像 发表于 11-07 16:02 510次阅读

    固态电池中复合锂阳极上固体电解质界面的调控

    采用固体聚合电解质(SPE)的固态锂金属电池(SSLMB)具有更高的安全性和能量密度,在下一代储能领域具有很大的应用前景。
    的头像 发表于 10-29 16:53 415次阅读
    <b class='flag-5'>固态</b>电池中复合锂阳极上固体<b class='flag-5'>电解质</b>界面的调控

    固态电池在储能系统中的应用

    的优势在储能系统中展现出巨大的应用潜力。 一、固态电池的基本原理 固态电池的核心在于使用固态电解质代替传统的液态电解质。这种
    的头像 发表于 10-28 09:30 552次阅读

    固态电池的能量密度是多少

    为研究的热点。 固态电池的基本原理 固态电池的核心在于其使用的固态电解质,这种电解质取代了传统锂离子电池中的液态
    的头像 发表于 10-28 09:26 720次阅读

    固态电池的未来发展趋势

    的基本原理 固态电池的核心区别于传统液态锂离子电池在于其使用固态电解质代替了液态电解质固态电解质
    的头像 发表于 10-28 09:15 794次阅读

    无极电容器有电解质吗,无极电容器电解质怎么测

    无极电容器通常存在电解质电解质在无极电容器中起着重要作用,它可以增加电容器的电容量和稳定性。然而,电解质也可能带来一些问题,如漏电和寿命问题。
    的头像 发表于 10-01 16:45 377次阅读

    氧化布局格局一览 氧化电解质何以撑起全固态

    今年以来,各式各样的半固态、全固态电池开始愈发频繁且高调地现身,而背后均有氧化电解质的身影。
    的头像 发表于 05-16 17:41 1080次阅读

    铌酸锂调控固态电解质电场结构促进锂离子高效传输!

    聚合固态电解质得益于其易加工性,最有希望应用于下一代固态锂金属电池。
    的头像 发表于 05-09 10:37 787次阅读
    铌酸锂调控<b class='flag-5'>固态</b><b class='flag-5'>电解质</b>电场结构促进锂离子高效传输!

    固态电池结构示意图

    相较于传统锂离子电池,固态锂离子电池安全性能高,无自然,爆炸的风险。氧化硫化物电解质固态电池能量密度高于采用相同正负极材料的传统锂电
    的头像 发表于 04-01 16:56 2942次阅读
    <b class='flag-5'>固态</b>电池结构示意图

    请问聚合电解质是如何进行离子传导的呢?

    在目前的聚合电解质体系中,高分子聚合在室温下都有明显的结晶性,这也是室温下固态聚合电解质
    的头像 发表于 03-15 14:11 1215次阅读
    请问聚合<b class='flag-5'>物</b><b class='flag-5'>电解质</b>是如何进行离子传导的呢?

    不同类型的电池的电解质都是什么?

    聚合,如固态电池,固态陶瓷和熔融盐(如钠硫电池)中使用的聚合。 铅酸电池 铅酸电池使用硫酸作为电解质。充电时,随着正极板上形成氧化铅(P
    的头像 发表于 02-27 17:42 1561次阅读

    固态电解质离子传输机理解析

    固态电解质中离子的迁移通常是通过离子扩散的方式实现的。离子扩散是指离子从一个位置移动到另一个位置的过程,使得电荷在材料中传输。
    发表于 01-19 15:12 2755次阅读
    <b class='flag-5'>固态</b><b class='flag-5'>电解质</b>离子传输机理解析

    关于固态电解质的基础知识

    固态电解质在室温条件下要求具有良好的离子电导率,目前所采用的简单有效的方法是元素替换和元素掺杂。
    的头像 发表于 01-19 14:58 1.9w次阅读
    <b class='flag-5'>关于</b><b class='flag-5'>固态</b><b class='flag-5'>电解质</b>的基础知识

    铜集流体是否适用于硫化物固态电池?

    硫化物固态电池因其高能量密度、高安全性、长循环寿命引起了研究界的广泛关注。
    的头像 发表于 01-10 09:16 1121次阅读
    铜集流体是否适用于<b class='flag-5'>硫化物</b>全<b class='flag-5'>固态</b>电池?