电子发烧友网报道(文/李弯弯)近些年,物联网设备连接数正在快速增长。根据IoT Analytics数据,2022年活跃连接的物联网设备将达到144亿,2025年将增长至270亿。
作为物联网设备中必不可少的控制与计算的大脑,MCU的市场规模也将持续提升。另外随着AI、5G技术的发展,物联网终端设备对MCU也提出了新的要求。
在MCU中集成AI功能
IoT应用由感知、计算、执行、连接和安全几部分组成。工作流程基本是:首先,由传感器检测环境信息,将模拟信号转换为数字信号,传递给MCU;接着,MCU对这些数据进行计算分析和处理,得出决策结果,传递给执行层;再接着,执行层根据指令完成相应的动作。在这个过程中,必要的数据也会通过无线连接的方式上传到云端进行云AI运算或存储。
过去AI运算多在云端,现在逐渐向边缘端发展。目前的情况是一般在云端进行机器学习(简称ML)训练,推理除了在云端完成,也可以在设备端进行。在边缘端进行ML的处理,可以提高本地的设备响应,减少云端上传的数据带宽,提高本地数据的安全性。当前一些企业会在MCU中添加特定加速器,通过专用算力进行ML的运算,从而释放CPU的通用算力。
随着5G技术的发展,人们对传统产品的延迟和能耗提出了更高的要求。在MCU中融入人工智能算法,可以将MCU低功耗、低成本、实时性、稳定性、开发周期短、广阔的市场覆盖率等特性与人工智能强大的处理能力相结合,从而更有利于终端智能化。
在应用层面,图像和语音处理是MCU+AI的重要应用方向,比如图形识别、语音助手唤醒词处理以及其他用于各种安全系统的声音分类等应用。人工智能终将会渗透进人们生活的方方面面,而通过MCU来完成一些AI运算,也是未来的重要趋势。
越来越多的厂商布局
从目前的情况来看,全球主要几家MCU厂商都已经在该领域有所布局,包括意法半导体、瑞萨、恩智浦、英飞凌等等。
意法半导体从2007年起开始设计基于ARM Cortex-M的STM32 32位MCU系列,目前意法半导体通用MCU销量已位居全球首位,拥有基于ARM Cortex-M0/M0+/M3/M4/M7/M33,ARM Cortex A7等多个内核,超过1200个料号的多系列、多功能覆盖的全面MCU产品线。
该公司此前表示,近几年,智能家电的快速发展,对MCU的性能、互联提出了越来越高的要求,基于MCU平台运行人工智能和机器学习,发展性能更高、功耗更低的边缘计算,正在成为行业热点。面对这样的趋势,意法半导体很早就开始布局智能的MCU。
意法半导体的软件工具STM32CubeMX中就集成了AI模块,可以方便客户将训练好的AI模型转换为MCU上运行的软件,使MCU可以方便实现AI功能。
瑞萨电子在MCU领域也有很深的积累。今年6月9日,该公司宣布买下美国从事机器学习模型开发的新创企业Reality AI。
Reality AI公司的强项在于声音和视觉之外的传感器数据解析,例如工厂侦测异音或是汽车的语音辨识等都可应用到相关技术。瑞萨买下Reality AI,将可以结合自家MCU 产品,以及该公司的开发环境和推论软体等,对外提供支持AI运算的MCU。此前,虽然瑞萨有自行研发机器控制用途的MCU,但AI相关应用软件都是向外部合作伙伴购买的。
恩智浦也推出了内置NPU的MCU,该公司表示,AI应用最开始是在云端,而现在有一个很明显的趋势,从PC到嵌入式端的需求越来越多。人脸/语音识别门锁、以及包括语音识别、物体识别等在内的各种识别装置,都提出了在本地实现更多推理的需求。
以前的应用对一款微控制器的要求是,按下按钮就有很快的反应。现在就不止这些了,人们希望处理器本身具有预知性,这就需要增加人工智能技术。
恩智浦推出了针对MCU现有应用场景进行升级的内置NPU的MCX,在传统控制应用基础上增加AI元素,在医疗设备、无人机或者工业控制中加上智能识别、故障检测、语音控制等。
基于NPU的MCX可以应用在一些更新的场景中,比如可以识别物体的秤,只需把物体放在秤上就可以直接结账;在医学检测中,可以用于检测含疟疾的红细胞;在交通出行中,可以帮助智能车识别障碍,自动做出判断和处理等等。
小结
整体而言,随着物联网时代的发展,作为物联网设备中必不可少的计算大脑的MCU,也迎来了很好的市场增长机会。同时随着AI、5G技术发展,一些新兴应用场景也给MCU提出了新的要求,需要具备一定的AI功能。因此过去几年越来越多的厂商在MCU中集成AI功能。
作为物联网设备中必不可少的控制与计算的大脑,MCU的市场规模也将持续提升。另外随着AI、5G技术的发展,物联网终端设备对MCU也提出了新的要求。
在MCU中集成AI功能
IoT应用由感知、计算、执行、连接和安全几部分组成。工作流程基本是:首先,由传感器检测环境信息,将模拟信号转换为数字信号,传递给MCU;接着,MCU对这些数据进行计算分析和处理,得出决策结果,传递给执行层;再接着,执行层根据指令完成相应的动作。在这个过程中,必要的数据也会通过无线连接的方式上传到云端进行云AI运算或存储。
过去AI运算多在云端,现在逐渐向边缘端发展。目前的情况是一般在云端进行机器学习(简称ML)训练,推理除了在云端完成,也可以在设备端进行。在边缘端进行ML的处理,可以提高本地的设备响应,减少云端上传的数据带宽,提高本地数据的安全性。当前一些企业会在MCU中添加特定加速器,通过专用算力进行ML的运算,从而释放CPU的通用算力。
随着5G技术的发展,人们对传统产品的延迟和能耗提出了更高的要求。在MCU中融入人工智能算法,可以将MCU低功耗、低成本、实时性、稳定性、开发周期短、广阔的市场覆盖率等特性与人工智能强大的处理能力相结合,从而更有利于终端智能化。
在应用层面,图像和语音处理是MCU+AI的重要应用方向,比如图形识别、语音助手唤醒词处理以及其他用于各种安全系统的声音分类等应用。人工智能终将会渗透进人们生活的方方面面,而通过MCU来完成一些AI运算,也是未来的重要趋势。
越来越多的厂商布局
从目前的情况来看,全球主要几家MCU厂商都已经在该领域有所布局,包括意法半导体、瑞萨、恩智浦、英飞凌等等。
意法半导体从2007年起开始设计基于ARM Cortex-M的STM32 32位MCU系列,目前意法半导体通用MCU销量已位居全球首位,拥有基于ARM Cortex-M0/M0+/M3/M4/M7/M33,ARM Cortex A7等多个内核,超过1200个料号的多系列、多功能覆盖的全面MCU产品线。
该公司此前表示,近几年,智能家电的快速发展,对MCU的性能、互联提出了越来越高的要求,基于MCU平台运行人工智能和机器学习,发展性能更高、功耗更低的边缘计算,正在成为行业热点。面对这样的趋势,意法半导体很早就开始布局智能的MCU。
意法半导体的软件工具STM32CubeMX中就集成了AI模块,可以方便客户将训练好的AI模型转换为MCU上运行的软件,使MCU可以方便实现AI功能。
瑞萨电子在MCU领域也有很深的积累。今年6月9日,该公司宣布买下美国从事机器学习模型开发的新创企业Reality AI。
Reality AI公司的强项在于声音和视觉之外的传感器数据解析,例如工厂侦测异音或是汽车的语音辨识等都可应用到相关技术。瑞萨买下Reality AI,将可以结合自家MCU 产品,以及该公司的开发环境和推论软体等,对外提供支持AI运算的MCU。此前,虽然瑞萨有自行研发机器控制用途的MCU,但AI相关应用软件都是向外部合作伙伴购买的。
恩智浦也推出了内置NPU的MCU,该公司表示,AI应用最开始是在云端,而现在有一个很明显的趋势,从PC到嵌入式端的需求越来越多。人脸/语音识别门锁、以及包括语音识别、物体识别等在内的各种识别装置,都提出了在本地实现更多推理的需求。
以前的应用对一款微控制器的要求是,按下按钮就有很快的反应。现在就不止这些了,人们希望处理器本身具有预知性,这就需要增加人工智能技术。
恩智浦推出了针对MCU现有应用场景进行升级的内置NPU的MCX,在传统控制应用基础上增加AI元素,在医疗设备、无人机或者工业控制中加上智能识别、故障检测、语音控制等。
基于NPU的MCX可以应用在一些更新的场景中,比如可以识别物体的秤,只需把物体放在秤上就可以直接结账;在医学检测中,可以用于检测含疟疾的红细胞;在交通出行中,可以帮助智能车识别障碍,自动做出判断和处理等等。
小结
整体而言,随着物联网时代的发展,作为物联网设备中必不可少的计算大脑的MCU,也迎来了很好的市场增长机会。同时随着AI、5G技术发展,一些新兴应用场景也给MCU提出了新的要求,需要具备一定的AI功能。因此过去几年越来越多的厂商在MCU中集成AI功能。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
mcu
+关注
关注
146文章
16942浏览量
350045 -
AI
+关注
关注
87文章
29907浏览量
268193
发布评论请先 登录
相关推荐
NXP推出集成NPU的MCU,支持AI边缘设备!MCU实现AI功能的多种方式
旨在显著节省功耗,可在边缘端提供高达172倍的AI加速。 MCU 集成NPU 支持AI 功能
中伟视界:AI边端云一体化平台的智能化全流程解析
AI边端云一体化管控平台通过将边缘计算与云端服务整合,实现了从数据采集到决策的全流程智能化管理,提升了效率与安全性。平台支持多种设备的灵活集成
AI模型在MCU中的应用
机遇。将AI模型集成到MCU中,不仅提升了设备的智能化水平,还使得设备能够执行更复杂的任务,实现自主决策和实时响应。本文将从AI模型
苹果Apple Intelligence功能受限:端侧AI发展的存储瓶颈凸显
Intelligence功能,因受到存储限制的影响,无法在其所有设备上全面使用,这一状况无疑揭示了苹果在端侧AI发展上的存储瓶颈。
广和通发布基于高通 QCM6490和QCS8550处理器的端侧AI解决方案
、高算力推动移动机器人、工业机器视觉、智慧零售、自动驾驶等领域智能化。 相较于云侧AI,端侧AI
广和通发布基于高通QCM6490和QCS8550的端侧AI解决方案,使AI“更接地气”
6月7日,COMPUTEX 2024期间,为拓展物联网生态系统并满足端侧AI应用需求,广和通发布基于高通® QCM6490和QCS8550处理器的端
广和通发布基于高通QCM6490和QCS8550的端侧AI解决方案,使AI“更接地气”
6月7日,COMPUTEX 2024期间,为拓展物联网生态系统并满足端侧AI应用需求,广和通发布基于高通® QCM6490和QCS8550处理器的端
智能化IBMS集成管理系统:智慧园区综合管理的利器
随着科技的不断发展,智能化管理系统在各个领域得到了广泛应用。本文将为您介绍智能化IBMS集成管理系统,这是一种能够实现医院、园区和厂家等多个场景的智慧管理平台。接下来,古河云科技将会详
智能化IBMS集成管理系统:迈入智慧管理新时代
集成化的综合管理系统,通过数据采集、处理和分析,实现对建筑物或场所的设备、能源和安全等方面的全面管理和控制。古河云科技将详细介绍智能化IBMS集成管理系统的功能与优势,以及其
AI算法在矿山智能化中的应用全解析
矿山智能化必须建立一个全方位的智能化生态系统,包括勘探、开采、运输、加工、销售和管理等环节。为实现这一目标,需运用多种AI算法来解决矿山操作中的不同问题,如预测性维护、图像识别、自然语言处理、优化
评论