0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

SiC功率器件的发展及技术挑战

qq876811522 来源:国晶微第三代半导体碳化 作者:国晶微第三代半导 2022-11-06 18:50 次阅读

碳化硅(SiC)被认为是未来功率器件的革命性半导体材料;许多SiC功率器件已成为卓越的替代电源开关技术,特别是在高温或高电场的恶劣环境中。本章将讨论SiC功率器件面临的挑战和最新发展。第一部分重点介绍碳化硅功率二极管,包括碳化硅肖特基势垒二极管(SBD)、碳化硅PiN二极管(PiN),碳化硅结/肖特基二极管(JBS),然后介绍碳化硅聚碳场效应管、DMOSFET和几种MESFET,第三部分是关于碳化硅双极器件,如BJT和IGBT。最后,讨论了SiC功率器件开发过程中的挑战,特别是其材料生长和封装。

第一代和第二代半导体材料分别以硅(Si)和砷化镓(GaAs)为代表。宽带隙材料,如碳化硅(SiC)和氮化镓(GaN),被称为第三代半导体材料。SiC是1824年由Berzelius在钻石合成实验中发现的。SiC的首次用途是作为磨料。其次是电子应用程序。在20世纪初,SiC被用作第一批无线电中的探测器,然后自1907年以来变得流行,当时Henry Joseph Round通过向SiC晶体施加电压并观察阴极的黄色,绿色和橙色发射来生产第一个LED。这引起了电子研究人员的极大关注,大约半个世纪前,SiC在半导体行业的潜力得到了认可。与使用最广泛的半导体材料Si相比,SiC具有许多显着的电子特性,包括宽带隙,大临界电场,高导热性,高电子饱和速度,化学惰性和辐射硬度[1-3].这些优异的性能使SiC非常适合高电压、高功率和高温应用。

SiC功率器件在1970年代开始开发。在众多研究人员的努力下,1980年代其晶体质量和制造技术有了很大的提高,随后开发了各种SiC器件,其性能迅速提高。

目前,SiC功率器件的初级理论阶段已经完成。商业可用性阶段正在迅速发展;单晶衬底和器件制造工艺等工艺技术取得了长足的进步。自2001年起,英飞凌公司开始供应碳化硅肖特基二极管。现在碳化硅二极管、MOSFET、JFT、BJT等碳化硅三端器件已经面世,CREE、东芝意法半导体等公司都有供货SiC功率器件的能力。

然而,开发基于SiC的器件的主要障碍是SiC材料的质量和成本与Si基器件相比。随着近年来SiC外延材料工艺的进展,获得高质量的4H-SiC衬底和外延层是可行的,从而为SiC功率器件实现优异的功率性能。例如,100 mm 4H-SiC基板和外延层可用于制造功率器件。由于越来越多的研究人员和公司开始关注SiC材料,成本即将大幅下降,预计在不久的将来可以承受成本;反过来,这将促进SiC功率器件的发展。

碳化硅(SiC)被认为是未来功率器件的革命性半导体材料;许多SiC功率器件已成为卓越的替代电源开关技术,特别是在高温或高电场的恶劣环境中。本章将讨论SiC功率器件面临的挑战和最新发展。第一部分重点介绍碳化硅功率二极管,包括碳化硅肖特基势垒二极管(SBD)、碳化硅PiN二极管(PiN),碳化硅结/肖特基二极管(JBS),然后介绍碳化硅聚碳场效应管、DMOSFET和几种MESFET,第三部分是关于碳化硅双极器件,如BJT和IGBT。最后,讨论了SiC功率器件开发过程中的挑战,特别是其材料生长和封装。

碳化硅功率器件二极管场效应管场效应管

第一代和第二代半导体材料分别以硅(Si)和砷化镓(GaAs)为代表。宽带隙材料,如碳化硅(SiC)和氮化镓(GaN),被称为第三代半导体材料。SiC是1824年由Berzelius在钻石合成实验中发现的。SiC的首次用途是作为磨料。其次是电子应用程序。在20世纪初,SiC被用作第一批无线电中的探测器,然后自1907年以来变得流行,当时Henry Joseph Round通过向SiC晶体施加电压并观察阴极的黄色,绿色和橙色发射来生产第一个LED。这引起了电子研究人员的极大关注,大约半个世纪前,SiC在半导体行业的潜力得到了认可。与使用最广泛的半导体材料Si相比,SiC具有许多显着的电子特性,包括宽带隙,大临界电场,高导热性,高电子饱和速度,化学惰性和辐射硬度[1-3].这些优异的性能使SiC非常适合高电压、高功率和高温应用。

SiC功率器件在1970年代开始开发。在众多研究人员的努力下,1980年代其晶体质量和制造技术有了很大的提高,随后开发了各种SiC器件,其性能迅速提高。

目前,SiC功率器件的初级理论阶段已经完成。商业可用性阶段正在迅速发展;单晶衬底和器件制造工艺等工艺技术取得了长足的进步。自2001年起,英飞凌公司开始供应碳化硅肖特基二极管。现在碳化硅二极管、MOSFET、JFT、BJT等碳化硅三端器件已经面世,CREE、东芝、意法半导体等公司都有供货SiC功率器件的能力。

然而,开发基于SiC的器件的主要障碍是SiC材料的质量和成本与Si基器件相比。随着近年来SiC外延材料工艺的进展,获得高质量的4H-SiC衬底和外延层是可行的,从而为SiC功率器件实现优异的功率性能。例如,100 mm 4H-SiC基板和外延层可用于制造功率器件。由于越来越多的研究人员和公司开始关注SiC材料,成本即将大幅下降,预计在不久的将来可以承受成本;反过来,这将促进SiC功率器件的发展。

a143302e-5db6-11ed-a3b6-dac502259ad0.png

碳化硅二极管

功率二极管是现代电源应用中的关键元件。经典的整流功能因对开启和关闭速度的高要求而升级。为了制造SiC功率器件,欧姆触点在半导体和外部电路之间的信号传输中起着非常重要的作用。在过去的几十年中,在结构表征和电气性能方面,已经研究了大量的欧姆触点材料。对于n型SiC材料上的欧姆触点,最有希望的金属是镍(Ni)。已经证明,在900-1000ºC范围内退火的Ni薄膜可以在n型SiC上形成良好的欧姆接触,特定接触电阻为1×10-6Ω⋅厘米2[4].对于p型材料,由于肖特基势垒较高,欧姆接触形成甚至比n型材料更困难。许多研究都集中在铝/钛(Al/Ti)触点上,其特定的接触电阻约为10-5Ω⋅厘米2[5].

肖特基势垒二极管(SBD)

作为单极性器件,SBD的反向恢复电流为零。图1显示了碳化硅SBD的一般结构;它由金属和半导体块区域之间的电非线性接触形成。由SiC制造的SBD为电源电路设计提供了新的学位,自2001年以来已上市。SiC SBD最显着的优势是阻断电压和传导电流额定值的持续增加,从最初的300 V、10 A和600 V、6 A[6]到电流600 V,20 A[7].此外,预计SBD可以施加高达2,000 V的阻断电压(因为合并解决方案也高达3 kV)[8].首次报道了采用场板端子技术的4H-SiC,击穿电压为1,750 V[9].甚至可以预见,这种类型的二极管可能会取代中等功率电机驱动模块中的Si双极二极管。由于SBD中没有反向恢复电荷,因此它具有极快的导通性能,非常适合高速开关应用,并大幅降低典型电路的动态损耗。与硅和砷化镓二极管相比,SiC的高导热性也是SiC SBD的一大优势,因为它允许SBD在更小尺寸的冷却系统中以更高的电流密度额定值运行。然而,由于其较低的内置电位屏障,其反向漏电流很大,尤其是在高温下。

碳化硅MESFET

对于SiC功率金属半导体场效应晶体管(MESFET),击穿电压是允许功率器件实现特定功率密度和功率转换的一个非常重要的参数。图6是传统碳化硅MESFET的示意图。先前的研究提出了许多改善击穿电压的技术[22,23].为了优化表面电场并改善击穿电压,提出了新技术,其中包括REBULF(减少体积场)[24]和完整的3D缩小面场(RESURF)[25].高击穿是用REBULF技术在超薄外延层上获得的。可以确保这些新技术可以直接移植到SiC功率MESFET上。因此,设计了几种新的SiC功率MESFET,以优化击穿电压、特定导通电阻、频率和跨导的特性。

SiC功率器件的封装也是一个紧迫的问题。一旦克服了材料和工艺挑战,SiC器件的封装可靠性将是影响电路性能的关键因素。当设备在高温(≥200°C)下工作或冷却液温度要求工作温度高于当今的~150°C极限时,封装可靠性也很重要。例如,使用发动机冷却液的汽车电机驱动、石油和天然气钻井和开采、航空电子电源、空间电源和军事应用。提高功率处理能力以减少昂贵的芯片面积和冷却成本非常重要。因此,需要用于高温应用的新型封装材料。

由于通过非常快速的开关可以大大降低开关能量,并且在快速开关区域应用SiC功率器件时,应考虑器件和封装之间的内部电磁寄生效应问题。先进的电源模块架构非常重要。

在SiC功率器件的应用过程中,人们应该考虑高电场问题。由于器件内部电场较高,钝化层和芯片表面的场应力非常高,以至于端子边缘的芯片/凝胶界面的平均电场比SiC二极管高约3倍。在如此高的表面场强度下,任何颗粒或移动离子形式的污染都可能导致可能的电化学驱动腐蚀过程;钝化层中的任何材料缺陷和封装的任何分层/附着力不足都可能变得非常关键。这使得先进的绝缘技术变得非常重要。

由于没有反向恢复电荷,SBD具有极快的导通性能,非常适合高速开关应用,大大降低了典型电路的动态损耗,同时最大限度地减少了冷却系统的尺寸。SiC PiN二极管具有低栅极漏电流和高击穿电压的特点,因此可以在高电压和低频情况下用作开关。JBS具有与肖特基二极管相似的导通状态和开关特性,以及类似于PiN二极管的阻塞特性。与JFET相比,MESFET具有卓越的RF性能,因为栅极电容更小,跨导更高。SiC BJT的开关损耗和导通状态电压远低于Si BJT。除非逆沟道层中的电子迁移率和栅极氧化层的可靠性被突破,否则SiC MOSFET将不会在商业上得到普及。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    334

    文章

    27693

    浏览量

    221982
  • 场效应管
    +关注

    关注

    47

    文章

    1171

    浏览量

    64198
  • SiC
    SiC
    +关注

    关注

    29

    文章

    2881

    浏览量

    62884

原文标题:【档案室】SiC功率器件的新发展和挑战!

文章出处:【微信号:汽车半导体情报局,微信公众号:汽车半导体情报局】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    SiC功率器件的特点和优势

    SiC(碳化硅)功率器件正逐渐成为现代电力电子系统中的重要技术,其相较于传统的硅(Si)器件,特别是在高
    的头像 发表于 12-05 15:07 437次阅读
    <b class='flag-5'>SiC</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>的特点和优势

    SiC功率器件中的沟槽结构测量

    汽车和清洁能源领域的制造商需要更高效的功率器件,能够适应更高的电压,拥有更快的开关速度,并且比传统硅基功率器件提供更低的损耗,而沟槽结构的 SiC
    的头像 发表于 10-16 11:36 390次阅读
    <b class='flag-5'>SiC</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>中的沟槽结构测量

    碳化硅功率器件技术优势

    随着电力电子技术的飞速发展,传统的硅基功率器件因其物理特性的限制,已经逐渐难以满足日益增长的高性能、高效率、高可靠性的应用需求。在这一背景下,碳化硅(
    的头像 发表于 09-11 10:43 339次阅读

    什么是SiC功率器件?它有哪些应用?

    SiC(碳化硅)功率器件是一种基于碳化硅材料制造的功率半导体器件,它是继硅(Si)和氮化镓(GaN)之后的第三代半导体材料的重要应用之一。
    的头像 发表于 09-10 15:15 2254次阅读

    SiC器件在电源中的应用

    SiC(碳化硅)器件在电源中的应用日益广泛,其独特的物理和化学特性使得SiC成为提升电源效率、可靠性及高温、高频性能的关键材料。以下将详细探讨SiC
    的头像 发表于 08-19 18:26 1015次阅读

    使用SiC技术应对能源基础设施的挑战

    本文简要回顾了与经典的硅 (Si) 方案相比,SiC技术是如何提高效率和可靠性并降低成本的。然后在介绍 onsemi 的几个实际案例之前,先探讨了 SiC 的封装和系统集成选项,并展示了设计人员该如何最好地应用它们来优化
    的头像 发表于 07-25 09:36 397次阅读
    使用<b class='flag-5'>SiC</b><b class='flag-5'>技术</b>应对能源基础设施的<b class='flag-5'>挑战</b>

    三菱电机功率器件发展

    三菱电机从事功率半导体开发和生产已有六十多年的历史,从早期的二极管、晶闸管,到MOSFET、IGBT和SiC器件,三菱电机一直致力于功率半导体芯片
    的头像 发表于 07-24 10:17 723次阅读
    三菱电机<b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>发展</b>史

    碳化硅器件挑战现有封装技术

    共读好书 曹建武 罗宁胜 摘要: 碳化硅 ( SiC器件的新特性和移动应用的功率密度要求给功率器件的封装
    的头像 发表于 06-23 17:50 847次阅读
    碳化硅<b class='flag-5'>器件</b><b class='flag-5'>挑战</b>现有封装<b class='flag-5'>技术</b>

    SiC与GaN 功率器件中的离子注入技术挑战

    碳化硅(SiC)和氮化镓(GaN)等宽带隙(WBG)半导体预计将在电力电子器件中发挥越来越重要的作用。与传统硅(Si)设备相比,它们具有更高的效率、功率密度和开关频率等主要优势。离子注入是在硅
    的头像 发表于 04-29 11:49 1458次阅读
    <b class='flag-5'>SiC</b>与GaN <b class='flag-5'>功率</b><b class='flag-5'>器件</b>中的离子注入<b class='flag-5'>技术</b><b class='flag-5'>挑战</b>

    全面的SiC功率器件行业概览

    SiC功率器件市场正处于快速增长阶段,特别是在汽车电动化趋势的推动下,其市场规模预计将持续扩大。 根据Yole Group的报告,汽车行业对SiC
    发表于 04-07 11:20 825次阅读
    全面的<b class='flag-5'>SiC</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>行业概览

    碳化硅(SiC功率器件核心优势及技术挑战

    SiC器件的核心优势在于其宽禁带、高热导率、以及高击穿电压。具体来说,SiC的禁带宽度是硅的近3倍,这意味着在高温下仍可保持良好的电性能;其热导率是硅的3倍以上,有利于高功率应用中的热
    发表于 03-08 10:27 1600次阅读
    碳化硅(<b class='flag-5'>SiC</b>)<b class='flag-5'>功率</b><b class='flag-5'>器件</b>核心优势及<b class='flag-5'>技术</b><b class='flag-5'>挑战</b>

    一文解析SiC功率器件互连技术

    和硅器件相比,SiC器件有着耐高温、击穿电压 大、开关频率高等诸多优点,因而适用于更高工作频 率的功率器件。但这些优点同时也给
    发表于 03-07 14:28 1494次阅读
    一文解析<b class='flag-5'>SiC</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>互连<b class='flag-5'>技术</b>

    碳化硅(SiC功率器件在新能源汽车中的深入应用解析

    采用多芯片并联的SiC功率模块,会产生较严重的电磁干扰和额外损耗,无法发挥SiC器件的优良性能;SiC
    发表于 03-04 10:35 2002次阅读
    碳化硅(<b class='flag-5'>SiC</b>)<b class='flag-5'>功率</b><b class='flag-5'>器件</b>在新能源汽车中的深入应用解析

    碳化硅功率器件的特点和应用

    随着全球能源危机和环境问题的日益突出,高效、环保、节能的电力电子技术成为了当今研究的热点。在这一领域,碳化硅(SiC功率器件凭借其出色的物理性能和电学特性,正在逐步取代传统的硅基
    的头像 发表于 02-22 09:19 847次阅读

    SiC功率器件特征有哪些

    碳化硅(SiC功率器件是一种半导体器件,具有许多独特的特性,使其在高性能电力电子应用中具有优势。以下是SiC
    的头像 发表于 02-04 16:25 824次阅读